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ABSTRACT: Particel Swarm Optimization (PSO) is a form of population evolutionary algorithm introduced in the early 1995 by 

two American scientists, sociologist James Kennedy and electrical engineer. Russell. This thesis mainly deals with the PSO 

optimization algorithm and the methods of adaptive adjustment of the parameters of the PSO optimization. The thesis also 

presents some basic problems of PSO, from PSO history to two basic PSO algorithms and improved PSO algorithms. Some 

improved PSO algorithms will be presented in the thesis, including: airspeed limit, inertial weighting, and coefficient limit. These 

improvements are aimed at improving the quality of PSO, finding solutions to speed up the convergence of PSO. 

  After presenting the basic problems of the PSO algorithm, the thesis focuses on studying the influence of adjusting parameters on 

the ability to converge in PSO algorithms. PSO algorithms with adaptively adjusted parameters are applied in solving real 

function optimization problems. The results are compared with the basic PSO algorithm, showing that the methods of adaptive 

adjustment of the parameters improve the efficiency of the PSO algorithm in finding the optimal solutions.   

 

1. INTRODUCTION 

Particle Swarm Optimization (PSO) is a form of population evolutionary algorithms. There have been many proposed and studied 

population-based evolutionary algorithms such as genetic algorithm (GA), ant colony algorithm (ACO). However, PSO differs 

from GA in that it favors using the interactions between individuals in a population to explore the search space. PSO is the result 

of modeling the flight of birds in search of food, so it is often classified as algorithms that use swarm intelligence. Introduced in 

1995 at an IEEE conference by James Kennedy and engineer Russell C.Eberhart. Algorithms have many important applications in 

many fields where it is required to solve optimization problems. 

Although the PSO algorithm has been shown to be highly effective in solving many optimization problems in practice, one of 

the weaknesses of the PSO algorithm is that it has a lot of parameters in the algorithm model. Some parameters can greatly affect 

the efficiency of the algorithm such as: population size, acceleration coefficients, coefficient of inertia,.... Usually, these 

parameters will be selected manually by researchers and experimenters of PSO algorithms using previously available knowledge. 

However, such manual selection does not guarantee that the algorithm will give good results. This topic will focus on studying 

methods of adaptively adjusting parameters for PSO algorithm in order to improve the efficiency of the algorithm in finding 

optimal solutions for problems. 

Particle Swarm Optimization (PSO) was developed by social psychologist (James Kenned) and electrical engineer (Russel 

Eberhart) in 1995 [1], starting from initial experiments. on bird behavior by biologists (Frank Heppner). Since then PSO has made 

strong progress and has many applications in solving practical problems. There have been many studies showing that PSO is more 

efficient than some other well-known algorithms (eg Gen algorithm) in solving some practical problems.  

In Vietnam, the research and application of PSO is relatively small. Therefore, this topic aims to learn about PSO and study 

methods of adaptive adjustment of parameters of PSO.  

 

2. LITERATURE REVIEW HISTORY OF PSO 

Swarm optimization (PSO) refers to a family of algorithms used to find globally optimized solutions. PSO can be easily 

implemented in many languages and has been proven effective when it comes to solving optimization problems.  

PSO was originally developed by a social psychologist (James Kennedy) and an electrical engineer (Russel Eberhart) in 1995 

[1], having emerged from previous experiments by a biologist ( Frank Heppner) describes the foraging behavior of flocks of birds. 

According to Heppner [24], the description of a flock of birds has the following characteristics: The birds start by flying around 

the target but do not know the exact coordinates. If a leader bird flies over an area at the correct location, all the birds in the flock 

are attracted to follow the leader and fly into that exact location. Each bird tries to fly among the birds near it. They are always 

drawn (influenced) from the leader and the one next to him. The affected birds follow the leader more and more until the whole 

flock reaches the right spot. Eberhart and Kennedy in [1] explain Heppner's description as follows: Finding a leader is similar to 
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finding a solution among possible solutions. The way in which a leader bird guides the nearby birds to follow it, increases the 

range they will find it, it is the focal point for the entire flock of birds to follow it.  

A bird, similar to a solution, can fly through a solution space and arrive at the best solution. Particles learn from their successes 

in the past, just as we learn from our own experiences in the past. Individuals (individuals) learn primarily from the successes of 

the birds next to them. It is similar to when we compare ourselves to others and we imitate the behavior of others who have had 

success with the things we care about.  

2.1. Full model of pso 

PSO simulates the behavior of birds.  

Assume the following scenario [24]: a flock of birds is randomly foraging in the area. Only a little food in the area is being 

sought. The whole flock of birds do not know the exact location of the food, but they do know the distance to the food during each 

iteration of the search. Therefore, the answer to the question must be sought, what is the best strategy for foraging?  

PSO learns from that scenario and uses it to solve optimization problems. In PSO, for each solution called a "Particle", is a 

bird in the search space. Each particle has a suitable value, evaluated by optimized objective functions, and has a velocity to 

indicate its flight path. The PSO is initialized with a random pool of particles, and search optimization is performed by updating 

the next generation of particles. Put xi(t) in the position of Particle i at step t. The Particle's position is changed by adding a 

velocity, vi(t) to the current position. As a result, the position of Particle i in the (t + 1)th step can be calculated as follows:  

xi(t+1) = xi(t) + vi(t+1) (2.1) 

It is the velocity vector that affects the flight of each particle. It is also the experience knowledge of the particles and the 

exchange of common information from its neighbors. The acquired knowledge experience of a particle is often called the 

cognitive component (learning factor), which is proportional to the distance of the particle from its best position in the past. The 

social exchange of information is called the social component of the Particle.  

The way a Particle communicates depends on the extent of its neighbors. If the neighbor of each particle is the entire swarm, 

then the particle is said to be the best global PSO; conversely, if the neighbors of each particle are only part of the swarm, then 

this is called the local best PSO. 

2.2. Global PSO  

Global optimal PSO (gbest PSO), when the neighbor of each particle is the entire swarm. Information exchanged between 

particles reflects information obtained from all particles in the swarm 

Given gbest PSO, the velocity of Particle i at the iteration at t+1 is calculated as [1]: 

 vij(t+1) = vij(t) +c1r1j[yij(t) –xij(t)]+c2r2j[y’j(t)-xij(t)] (2.2) 

Condition : 

vij(t) is the velocity of Particle i at dimension j = 1,2…nx at step t  

xij(t)is the position of Particle i at dimension j = 1,2…, nx at step t  

c1 , c2 are learning factors (velocity acceleration factor), they are used to increase the contribution based on the experience and 

the swarm population in a predetermined order.  

r1j(t) ,r2j(t) is the random value in the interval [0,1], r1j(t) ,r2j(t) is the storage environment of the algorithm.  

yij(t) is the best individual position of Particle i at dimension j in the first step. It is the best position of Particle i since the first 

step. The best position of each individual in the t +1 step is calculated as follows: 

                  (2.3) 

when f : is a suitable function value, evaluate the approximate value that is close to the optimized solution.  

y'j(t) : is the global best position of all particles in the swarm at direction j. The global best value y'(t) at step t is defined by 

   y’(t) = min{ f(y0(t)), f(y1(t)),…., f(yns(t))}  (2.4) 

when ns is all particles in the swarm. 

2.3. The algorithm gbest PSO 

The velocity of each particle in the swarm is calculated by equation (2.2), the algorithm used to find optimization problems 

according to [1]: The optimization algorithm is as follows: 

Step 1: Initialize the swarm S with nx dimensions 

Put  yi = xi 

   Put  y’ = x1 

 Step 2: 

 Repeat:   

  For each particle i= 1,2,…,ns do  

   // best position the Particle itself 
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   if f(xi) < f(yi) then 

    yi = xi 

   end 

   // Global best position reset 

   if f(yi) < f(y’) then 

    y’ = yi  

   end 

  end 

  for each particle i = 1,2,…,ns do 

Update the velocity in the formula (2.5)  

Update position in formula (2.1)   

end 

When the condition is met, stop the algorithm. 

2.4. Geometry show 

Geometric methods are used to describe the motion of particles in global PSO algorithms. For simplicity, we consider a Particle in 

two-dimensional space as follows: 

 
Figure 2.1 : Particle's position at step t+1.[1] 

 

 
Figure 2.2 : Particle's position at step t+2.[1] 

 
 Suppose that in the tth step Particle is at the position shown in Figure 2.1, the best and the best Particle instances globally at 

the positions shown in the figure are under the influence of three components (update velocity, swarm velocity) , inertial velocity), 
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the position of the particle at step (t+1) is closer to the global best position. In Figure 2.2, it is shown that the particles move from 

step (t+1) and to a new position when in step (t+2). In the new location, there can be two cases for a Particle [1] : 

Case 1: The solution at the new location is better than the current global best. In this case the new position will become the new 

global best position, and all the Particles in the swarm will be attracted to the direction of the Particle in this new location.  

Case 2: New solution found in new location is still as good as global best Particle. Then, in the next step, herd perceptions of the 

three-component effects will guide the whole swarm particles back in the direction of the global best.  

2.5. Local best PSO 

In the best-to-all PSO, the neighbor of each particle is the whole herd. For the local best PSO, the neighbor of each Particle is just 

a Particle number [1]. The components reflect the exchange of information between Particle's neighbors, in lbest PSO, the rate is 

calculated as [1] : 

  vij(t+1) = vij(t) +c1r1j[yij(t) –xij(t)]+c2r2j[y’ij(t) - xij(t)] (2.5) 

when y'ij(t) is the best position found from the neighbor of the ith particle in the j direction in the tth step. The local best particle 

position, y'i, the best position found in the neighbor Ni is defined as   

   y’i(t+1) {Ni|f(y’(t+1)) = min{f(x)}, xNi} (2.6) 

With Ni neighbors are counted   

 (2.7) 

 

 

It should be noted that for basic PSO, the selection of neighboring particles is based on the Particle indexes. In fact, there are also 

other approaches in which neighboring particles are selected based on the distance between particles [9], but this is not considered 

in this thesis. There are two main reasons why Particle neighbors based on Particle indexes are used [1]: -One is because it is 

computationally expensive, since it is not necessary to consider the spacing between particles. For these approaches from the 

distance between particles are used to form neighbors, and usually the Euclidean distance between all pairs of particles, which 

requires a complexity O(n2) . 

Second, because it helps to promote the spread of information from a good solution, obtained for all particles, regardless of their 

position in the spatial search. It is also important to note that neighboring particles can be overlapped. Each Particle can join 

several neighborhoods. This connection ensures that the swarm convergence will be at a single point. In fact, the global best PSO 

is just a special case of the local best PSO when   

The algorithm lbest PSO 

The lbest PSO algorithms are the same as gbest PSO, except for some differences in the equation for updating the velocity, which 

is summarized as follows:  

Step 1: Khởi tạo bầy S với nx chiều 

   Put  yi = xi 

   Put  y’i = xi 

Step 2: 

 Repeat:   

  For each particle i= 1,2,…,ns do  

   // best position the Particle itself 

If  f(xi) < f(yi) then 

    yi = xi 

   end 

   // Local best position reset   if 

f(yi) < f(y’i) then 

    y’i = yi  

   end 

  end 

  for each particle i = 1,2,…,ns do 

 Update the velocity in the formula (2.5)  

 Update position in formula (2.1) 

  end 

When the condition is met, stop the algorithm. 
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3. COMPONENTS OF BASIC PSO 

This section presents some components of the PSO model that can affect its effectiveness. These components include the Particle 

initialization and the stopping condition of the algorithm, besides the basic parameters are also mentioned. 

3.1. Initialize PSO 

The first step of the PSO algorithm is to initialize the swarm using the Pseu-dorandom method. Assume that an optimal is placed 

in the domain defined by two vectors xmin and xmax, representing the lower and upper bounds in each dimension of the search 

space, respectively. Then a maximum efficiency of the two vectors xmax and xmin  

in the constructor for Particle positions can be [1]: 

 xij(0)= xmin,j +ri(x max,j – xmin,j), j=1,…,nx, i=1,…,ns (3.1) 

when rj is a random number in the range [0,1] The initialization velocity can be initialized to 0, that is, vij = 0, it is possible to 

initialize the velocity to random values, but must be done with care. The initial value of the particle velocity and position is 

random, the particle velocity is zero (that is, they are fixed), when the particle starts up at a non-zero velocity and with a value that 

is not too large. A large initial velocity will have a large initial effect leading to a large initial position update. This makes the 

particle go beyond the boundaries of the search space, causing the swarm to iterate many times before meeting. converge to the 

optimum point. 

3.2. Algorithm stop condition 

The second factor affecting the performance of PSO is the stopping condition of the algorithm, which is the criterion used to 

terminate the iteration in the search process. The following two principles are considered when selecting some of the repetition 

termination criteria: The stopping condition of the algorithm is not the cause for the early convergence of PSO when the optimal 

solution is selected. -The stopping condition should not lead to overcomputing for the suitable value of the function, if the 

stopping condition requires frequent calculation of the value of the suitable function, the computational complexity will increase 

significantly in search process. There are documents that use some stopping conditions as follows [1]: -Stop the algorithm when 

the maximum number of repetitions exceeds the specified number of times. It is easy to see that if the number of iterations is too 

small, before a good solution is found, stopping the algorithm may be too early. So this status is only used to evaluate the best 

solution found within the specified time period.  - Stopping the algorithm when it finds x* is an accepted optimal 

solution, assuming it is an optimal objective function, then this condition terminates the search as soon as a particle is found that 

f(xi) ≤ |f(x*) - |; that is, when with an acceptable error probability threshold found, the threshold  is chosen carefully, if  is too 

large the search process ends up with a solution that does not meet the optimal conditions. On the other hand, if  is small, the 

search does not end at all. Assume a stop condition that tells the algorithm about the global optimization value, where the optimal 

is usually zero.  

-Algorithm stops when observation in some iterations still does not improve, Some progress can be the standard by which to judge 

in some ways [1], such as if the average position changes of particles is small, the swarm can be considered convergent, otherwise 

if the average velocity of the particle over a number of iterations is approximately zero, only a small position update is performed, 

then the search may stop. again. The search can also be stopped if after a number of iterations there is still no significant 

improvement.  

-Terminate the algorithm when the radius of the normal swarm is close to zero. The swarm radius is calculated as follows [7] :

  

   
)(

max

Sdiameter

R
Rnorm        (3.2) 

When diameter (S) is the diameter of the original swarm and R is the maximum radius.   

 
sm nmyxR ,...,1,'

max 
     (3.3) 

With 

    siim nyxyx ,...,1,''   (3.4) 

- Stop the algorithm when the objective function value approaches zero. The above conditions only stop to consider the relative 

position of the particles, but not the slip of the objective function. Changes in the objective function are considered proportionally 

[7]: 

     f’ = (f(y’(t))-f(y’(t-1)) /(f(y’,(t)) (3.5) 

if f'< for some continuous iteration, the swarm seems to have converged. The stopping condition has a problem as the search will 

terminate if some particles are stuck to the local minimum, even though other particles may still be in probing the search space. To 

solve this problem, this condition can be used in combination with radius methods to check that all particles have indeed 

converged to the same point in time before terminating the search. 

http://www.ijsshr.in/


Adjusting Parameters in Optimize Function PSO 

IJSSHR, Volume 05 Issue 03 March 2022                         www.ijsshr.in                                                           Page 955 

3.3. Basic PSO parameters 

  This section discusses the parameters that affect two basic PSO algorithms. Those parameters are the swarm size, the 

distance between the particles in the swarm, the learning factor. The size of the swarm ns is the number of particles in the swarm, 

the particles in the swarm are larger than the initial diversity of the swarm, provided that a well-distributed and well-distributed 

initialization method is used to initialize the particles [1]. A large Swarm allows most of the search space to be safe for each 

iteration. However, with many particles the computational complexity increases. In some real studies, it has been demonstrated 

that PSO has the ability to find the optimal solution with small swarm size from 10 to 30 particles [4]. Even with the number of 

elements in the swarm less than 10, success is still obtained [7]. At the same time, experimentally studying a general solution of 

swarm ns[10,30], the problem depends on the optimal size of the swarm, a fine search space usually needs a very small number 

of particles than the rough surface. determining the optimal solution location. Particle Neighbor Size: The size of the swarm 

determines the mutual interaction between the particles in the swarm. The smaller the neighbor size of the particle, the less 

interaction occurs and can slow down the convergence of the PSO. These factors give PSO a more reliable convergence with 

respect to the global optimization method [1], which takes advantage of small and large neighbor sizes. PSOs can be searched 

with small sizes and gradually increased in number [9]. Learning factor (or acceleration factor): The coefficients c1 and c2 with 

random vectors r1 and r2, control the effect of starting a process of cognitive and social components on the velocity of the 

particles. [first]. While c1 represents the confidence of a particle itself, c2 represents the confidence contained in the neighboring 

particles of a particle. If c1 = c2 = 0 Particles keep their current magnetic velocity until they reach the boundary of the search 

space. If c1 > 0 and c2 = 0, all particles climb the hill independently. On the other hand, if c2 > 0 and c1 = 0, the whole swarm is 

attracted to a single point y'. The swarm becomes a random climber . Usually, c1 and c2 are chosen to be equal.  

3.4. Performance Indicators 

  This section presents various measures to quantify the performance of PSO algorithms. Measures, as in other optimization 

methods, are based on several criteria such as accuracy, reliability, stability, efficiency, diversity and coherence. 

 3.4.1. accuracy 

Accuracy refers to the quality of the solutions obtained. If prior knowledge of optimization is available, quality can be expressed 

as errors of the global best position. For example, if the optimal value is known, the correctness of the solution y'(t), can be 

defined as: 

 accuracy(S,t)=|f(y’(t) –f(x*))| (3.6) 

where x* represents the theoretical optimal. If PSO is used to train a neural network, the accuracy is simply the mean squared 

error (MSE) or squared error (SSE) over the samples in the dataset provided to train the network. neural, f(x*) is usually zero. If 

there is no information about the optimization, the swarm accuracy at step t is simply the global best-fit Particles, i.e. 

 accuracy(S,t)=f(y’(t)  (3.7) 

3.4.2. reliability 

Since the start-up of the PSO algorithms is random, their performance is evaluated over a sufficiently large number of simulations. 

Reliability refers to the simulation rate to achieve a certain accuracy (fit or error value). The reliability of a swarm can be defined 

[1]:    (3.8) 

where  is a predetermined level of precision, N is the total number of simulations, and n is the number of simulations that reach 

a certain accuracy. The larger the value of reliability (S(t),  ), the more reliable the flock.  

3.4.3. Stability 

  The stability of the PSO can be measured by the variance of a performance standard across several simulations. The stability of a 

swarm can be expressed as [1]: 

    (2.16) 

where is the average of performance benchmarks over a number of simulation, and  is the difference in performance criteria. 

 3.4.4. Effective 

The swarm efficiency is expressed as the number of iterations, or the number of matches, to find a solution with specified 

precision . The swarm efficiency represents the relative time to reach a desired solution. 

 3.4.5. Diversity 

Diversity is important for optimization based on the number of algorithms. The great variety ensures that a larger area of the 

search space can be explored. The diversity of the flock can be calculated as [1]: 

   (3.9) 

trong đó xj(t) là trung bình của chiều thứ j trên tất cả các Particle, tức là 
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    (3.10) 

Một cách cách khác để đánh giá đa dạng của các bầy đã được đưa ra  

trong [22] 

 (3.11) 

when diameter (S(t)) is the diameter of the swarm defined as the distance between two distal outer paticles. It can be seen that the 

construction of diversity in equation (3.11) is independent of the swarm size, the number of dimensions of the search space and 

the search scope in each dimension.  

 

4. METHODS OF ADJUSTING PARAMETERS FOR PSO 

As mentioned above, although the PSO algorithm has been shown to be effective for many optimization problems, one of the 

limitations of PSO has a lot of parameters in the algorithm model. Often the parameters will be selected manually by the 

researcher or the PSO user. However, this manual selection does not guarantee that the algorithm will give good results on many 

problems of interest to the user. Therefore, in order to overcome that drawback, many researchers propose methods to adjust 

parameters for PSO. In this section we will present some methods of adjusting that parameter. In the following section, we will 

use the inertial weight model to adjust the parameters of the PSO. As described in Section 2, in the inertial weighted model, the 

velocities of the particles are updated using the following formula:  

    vij(t+1) = wvij(t) +c1r1j[yij(t) – xij(t)] + c2r2j[y’j (t) –xij(t)]    (4.1) 

After the velocity of the particles has been updated, the position of that particle will be recalculated according to formula (2.1). It 

can be seen that, in formula (3.1), if the value of w is chosen to be fixed as 1, then that is the basic PSO model. Thus, in this 

model, there are three parameters that need attention: inertial weight, w, and acceleration coefficients c1, c2. In section 3.1, we 

will present the adaptive adjustment method w. The tuning algorithm c1, c2 will be presented  

4.1. Adaptive tuning of inertial weights  

As mentioned in Chapter 2 when talking about inertial weights, there are many methods for adaptively tuning the inertial weight 

w. Some of the basic methods will be presented below: -Random tuning: a different number of inertia is randomly chosen each 

iteration. One common way is to sample from a distributed Gaussian, for example 

   w ~ N(0.71, ) (4.2) 

where  is small enough to ensure that w ≤1. In addition, Peng and colleagues used: [15]    

w = (c1r1 + c2r2) (4.3) 

no random scaling of cognitive and social components -Linear reduction: A large value of inertia (usually 0.9) is chosen as at the 

beginning and then it is reduced to a small value (usually 0.4). It was calculated in [16] as 

    (4.4) 

where nt is the maximum number of iterations, w(0) is the initial inertia weight, w(nt) is the final value of inertia, and w(t) is the 

mass of inertia at step t. -Nonlinear reduction: It is similar to linear reduction but the formula for inertia reduction is non-linear. 

The nonlinear reduction method allows a shorter amount of exploration time than the linear reduction method. Therefore, these 

methods will be more suitable for smoother search space. The following nonlinear reduction methods have been proposed in the 

literature: 

  - Naka et al. [16], 

    (4.5) 

- Venter and Sobieszczanski-Sobieski [23], 

   w(t+1)=αw(t’) (4.6) 

where α = 0.975, and t' is the time step when the final inertia changes. - Clerc proposed an adaptive inertia approach where the 

amount of change in the inertial weights is proportional to the improvement in swarm relations [17]. The inertia weights are 

adjusted according to: 

    (4.7) 

when the improvement is relative, mi is approximately the same as    

  (4.8) 
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with w(nt)  0.5 and w(0) <1 

3.2. Adjust the acceleration coefficients c1, c2 

 This method was introduced by authors Li Guo and Xu Chen in 2009 [6]. This method comes from the observation that the nature 

of the search process using the PSO algorithm is dynamic and adaptive. Therefore, fixing the acceleration coefficients c1 and c2 is 

contrary to the nature of the PSO algorithm and can lead to a reduction in the efficiency of the algorithm. This is completely 

understandable for two reasons: First, even if the particles have good fitness values, fixing the acceleration coefficients can hinder 

the convergence of these particles. Second, when the PSO algorithm is stuck to local extremes and the PSO algorithm cannot 

escape these local extremes if the coefficients c1 and c2 are fixed.  

Based on that analysis, Guo and Chen propose a new method for adaptive tuning of parameters c1 and c2. Details of this method 

are presented in the following section.  

Particle's velocity is updated according to the formula:  

    (4.9) 

From formula (9) it can be seen that c1 and c2 are two important parameters affecting the process of finding the optimal solution 

of PSO. In fact, these two parameters have a role to balance between PSO's local and global search capabilities. Since then, a new 

method for adaptively tuning those parameters was proposed by Guo and Chen. This new method is called Self-Adaptation 

Statege of Acceleration Coefficients (SASAC-PSO).  

In the SASAC-PSO Method, each particle can have different values of c1, c2, and these values can change over time. This 

technique helps the PSO algorithm to perform a better balance between global search and local search and thus the efficiency of 

the algorithm can be improved. The details of the SASAC-PSO algorithm are as follows:  

Step 1: Initialize the Particle i swarm randomly. Notation (xi (0), vi (0), ci (0)) (i = 1, ...., N), where xi (0), vi (0) and ci (0) 

respectively represent for initial position, velocity, acceleration, xi(0) and vi(0) are uniformly distributed separately random 

numbers in domain D and ci(0) = 1.  

Step 2: Default pi(0)= xi(0) and calculate 

 g(0) = argmin{f(p1(0)),…,f(pN(0))}, 

 đặt k = 0. 

Step 3: Increase the dimensionality of the position and velocity of each particle.  

Step 4: 

Deployment  Pi(k) (i = 1,2….,n)  and g(k) 

pi(k+1) = argmin{f(xi(k+1), f(pi(k))} 

g(k+1) = argmin{f(p1(k+1),….,f{pN(k+1))} 

Step 5:  

Check stop condition. If the stop condition is met, exit the program. Otherwise, go to step 6.  

Step 6: If g(k + 1) has not changed giving Pnum the number of loops in a row, then go to step 7, otherwise, ci(k + 1) = ci(k) (i = 1, 

.. ., N) and set k = k + 1. Then return to step 3. 

Step 7: Update AC for each Particle 

  

condition I is the sort index of the first  Particle  

Set k =k+1 and return to step 3. 

 

5. EXPERIMENTAL SETTINGS  

 The purpose of our experimental part is to compare the effectiveness of the adaptive tuning methods with the standard 

PSO algorithm and between the adaptive tuning methods. To test the effectiveness of those methods, we use them in finding 

optimal solutions of real functions in multidimensional space. We use the following 6 functions to test the efficiency of the 

algorithms. 

 5.1. Test function 

The functions used to test the algorithm are all standard functions (benchmark functions) often used to evaluate the efficiency of 

approximate optimization algorithms. All these functions are taken from the literature [8]. The following six functions are used in 

the experimental program to illustrate the algorithms:  

f1: Hyper-Ellipsoid: 

Hyper-ellipsoid :   , -5.12≤ xi ≤5.12, i=1,…,n  . 

Global minimum f(x)= 0 có thể đạt được, for  xi= 0, i=1,…,n 
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                                                      Figure 5.1 graph f1 Hyper-Ellipsoid 

f2: Rosenbrock function: 

 f(x,y) = (1 – x)2 + 100(y – x2)2, -2.048 ≤ x,y ≤ 2.048 

global minimum f(x,y) = (1,1) = 0 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

                                               Figure 5.2 graph f2 Rosenbrock 

 

 

 

f3: Rastrigin function: 

 
-2.048 ≤ xi,yi ≤ 2.048, i=1,…,n . Global minimum f(x) = 0, for xi =1, i=1,…,n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  Figure 5.3 Graph f3 Rastrigin 
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 f4: Schwefel function: 

 f(x1,…,xn) =  , -500 ≤ xi≤ 500 

global minimum f(x1,…,xn) = -418.9829n at xi= 420.9687 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                            Figure 5.4 graph f4 Swchefel 

 

f5: Griewank function: 

 f(x1,…,xn) = 1 +  , -600 ≤ xi≤ 600 

global minimum f(x1,…,xn) = 0 at xi= 0 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

                                                           Figure 5.5 graph f4 Griewangk 

f6: Ackley function: 

 

Put a =20, b=0.2, c=2 ,  -32.768 ≤ xi ≤ 32.768, i=1,…,n 

Global minimum f(x) = 0 , Is obtainable for xi=0, i=1,…,n 
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                                                                Figure 5.6 graph f6 Ackley 

Functions from f1 to f6 have their respective optimal ranges and values according to the following table [8].  

 

Table 5.1: standard values of functions reaching min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Description of the demo program 

 To install PSO algorithms, we use Java language, Net Bean IDE 7.4 programming tool. The parameters of the algorithms 

are chosen the same. As follows: 

- The size of the flock is: 100  

- Number of generations (number of loops) is: 100  

- The number of runs for each configuration is 30 times  

- Each function runs the number of dimensions 5, 10, 15, and 20 . respectively  

- For the inertial weighted adjustment algorithm (w-PSO), the value of w is initially chosen to be 0.7 and linearly 

decreases to 0.3 in the final generation.  

- For W-SASAC-PSO algorithm, w is also adjusted down linearly like W-PSO, while parameters c1 and c2 are adjusted 

according to Guo and Chen's method as in SASAC-PSO algorithm.  

The inertia weight w at step t is calculated by the formula (2.28)  

    (5.1) 

The inertial weight is adjusted according to the formula  

    (5.2) 

  when the improvement is relative, mi is approximately the same as 

    (5.3) 

   with w(nt)  0.5 and w(0) <1 

function xi 

Threshold value 

xi Function value f(x) reach 

min 

 

f1 (Hyp-ellisoid) 0 [-5.12, 5.12] 0 

f2 (Rosenbrock) 1 [-2.048,2.048] 0 

f3 (Rastrigin) 0 [-5.12, 5.12] 0 

f4 (Schwefel) 420.9687 [-500, 500] -418.9829*n 

f5 (Griewangk) 0 [-600, 600] 0 

f6 (Ackley) 0 [-32.768, 3278] 0 
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Parameters c1 and c2 are adjusted according to Guo and Chen's method as in the SASAC-PSO algorithm in step 7 of the 

algorithm as described above on page 30. 

Update AC for each Particle 

 

condition I is the ordered index of  Particle prevails first. Set k =k+1 and return to step 3. 

The formula Velocity is calculated in algorithms 

.Basic PSO: 

vij(t+1) = vij(t) +c1r1j[yij(t) –xij(t)]+c2r2j[y’(t)-xij(t)] (5.4) 

 

.W-PSO: 

vij(t+1) = w*vij(t)  + c1r1j[yij(t) –xij(t)] + c2r2j[y’(t)-xij(t)] (5.4’) 

 

.SASAC-PSO : 

vij(t+1) = C*[vij(t) +ci(k)r1(yij(t) –xij(t))+ci(k)r2(y’(t)-xij(t))] (5.5) 

 với C = 0.729 

- Thus, we see that the formula for updating velocity v common to all PSO algorithms is:  

v = C(w*v + c1r1[yij(t) –xij(t)] + c2r2[y’(t)-xij(t)])                          (5.6) 

Accordingly, when executing, will choose the input parameter if:  

Basic PSO C = 1, w = 1, c1, c2 random 

 SASAC-PSO: C = 0.729, w = 1, c1 = c1[k], c2 = c2[k] 

In the program, depending on the options selected on the interface, we will get the appropriate values for C, W, c1, c2 to pass in 

(1). When running experiments from function f1 to f6 in turn through PSO, SASAC-PSO algorithms, with parameters: Size of the 

swarm is 100, number of iterations 100, number of experimental runs per configuration is 30, through the dimensions 5, 10, 15 

and 20 respectively as follows  

From the results of 30 runs with corresponding values according to the table, calculate the average time value, the average optimal 

value of those 30 runs. From the experimental results obtained in Table 5.2 
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Table 5.2 : Result of function f1 (Hyper Ellipsoid), n=5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly f1 (Hyper_Ellipsoid) uses the PSO algorithm with dimensions of 5, 10,15 and 20 respectively, there will be 04 tables of 

results similar to Table 5.2. Each algorithm has 04 results tables, each function in turn experiment with 04 algorithms PSO, 

SASAC-PSO, will give 16 results tables; there are 06 functions from f1 to f6 used for experiment; after running the full 

experiment in turn, 96 tables of results were obtained, similar to Table 5.2; sequentially fill in the corresponding results in tables 

5.3, table 5.4, table 5.5 from which to get the final results of the experiment. To measure the efficiency of those algorithms, we 

use 3 metrics. The first measure is the average fitness value of the algorithms over 30 runs. The second measure is the best value 

of each method over 30 runs, and the third measure is the mean time of the methods over 30 runs. The results of the methods with 

these measures are presented in the following sections. 

5.3. Experimental results 

Table 5.3 below is the average fitness results of the methods over 30 runs. In this and subsequent tables, the value of the best 

method in each experimental configuration is highlighted in bold. 

 

 

Number 

of runs 

Number of 

loops Running time Optimal value 

1 100 10240 1.57E-28 

2 100 10210 8.11E-28 

3 100 10165 4.53E-27 

4 100 11065 2.44E-28 

5 100 13332 6.48E-29 

6 100 14556 1.17E-28 

7 100 15452 4.42E-27 

8 100 16344 2.03E-28 

9 100 16541 1.92E-28 

10 100 17257 7.16E-28 

11 100 19406 8.54E-28 

12 100 19940 9.24E-28 

13 100 20983 3.72E-29 

14 100 21485 4.18E-28 

15 100 22801 2.01E-28 

16 100 24289 8.77E-28 

17 100 23896 9.11E-28 

18 100 24801 5.93E-29 

19 100 26549 3.81E-28 

20 100 27931 4.02E-28 

21 100 28716 3.04E-29 

22 100 29254 3.11E-28 

23 100 29650 1.32E-28 

24 100 30955 5.10E-28 

25 100 31927 2.20E-28 

26 100 33012 4.65E-27 

27 100 33448 1.17E-28 

28 100 35790 1.05E-27 

29 100 35475 8.79E-28 

30 100 37492 1.36E-27 

  Trung bình 23098.73 0 
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Table 5.3 Compare average goodness results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be seen from Table 5.3 that all methods of adaptive adjustment of parameters give better results than standard PSO. In all 

functions and all configurations, these methods are better than standard PSO except on function f4. On this function, PSO is the 

best. Among the three methods of adaptive adjustment of parameters, it can be seen that the SASAC-PSO method is usually better 

and the SASAC-PSO method gives quite similar results. Thus, it can be seen that our proposed method is somewhat meaningful to 

help find better solutions on problems when the solution found by SASAC-PSO has not met the desired requirements.  

 

Table 5.4 Best results in 30 runs of each method 

function Algorithm 

Number of experimental dimensions – results 

5 10 15 20 

f1 
PSO 0.0034 (3) 0.0218 (2) 0.3031 (29) 0.0151 (2) 

SASAC-PSO(III) 0 (9) 0 (30) 0 (12) 0 (30) 

f2 
PSO 0.5080 (14) 8.4709 (14) 14.3711 (15) 19.4059 (7) 

SASAC-PSO(III) 0 (7) 4.4205 (11) 10.9482 (11) 17.3217 (4) 

f3 
PSO 0.4762 (1) 10.2935 (10) 3.6593 (0) 22.9244 (1) 

SASAC_PSO(III) 0.9950 (27) 0 (2) 4.9748 (14) 0.0001 (2) 

f4 
PSO 

-

2094.0865 (5) 

-

3680.7595 (7) 

-

5298.6627 (1) 

-

5988.3707 (13) 

SASAC_PSO(III) 

-

1976.4761 (5) 

-

3301.5305 (1) 

-

4290.8913 (14) 

-

5988.3707 (27) 

f6 
PSO 0.5541 (28) 1.1733 (2) 3.7323 (10) 4.0750 (30) 

SASAC-PSO(III) 0 (30) 0 (15) 1.3404 (1) 1.8400 (20) 

 

Table 5.4 shows the best fitness results of each method in 30 runs, each run is 100 laps. The first column (function) is the name of 

functions from f1 to f6 (according to table 3.1; standard values of functions reach min[8]); the second column (algorithm) – 

respectively the algorithms that are conducted PSO experiments, SASAC-PSO with dimensional numbers 5,10,15 and 20 

respectively - is represented by the obtained values corresponding to each algorithm, the number recorded in the pair of signs () is 

the number of runs that the algorithm get the value at that run – eg: function f1, algorithm PSO, at column dimensionality is 5; 

with the value 0.0034 (3); That is, the function f1 when running the experiment with the PSO algorithm with the number of 

function  Algorithm  

Dimensions 

5 10 15 20 

f1 
PSO 0.0242 0.4082 3.1476 5.2609 

SASAC_PSO(III) 0 0 0.0021 0.1099 

f2 
PSO 2.1969 9.3667 19.2679 28.5672 

SASAC_PSO(III) 0.2144 6.1470 12.6176 18.4354 

f3 
PSO 3.6723 23.7061 52.1721 87.8797 

SASAC_PSO(III) 5.4101 12.0017 19.3396 26.8649 

f4 
PSO -1816.8144 -3101.7300 -4478.0600 -5021.2200 

SASAC_PSO(III) -1565.5200 -2638.5400 -4478.0600 -4673.2400 

f5 
PSO 0.5760 1.3531 1.9903 3.4112 

SASAC_PSO(III) 0.1270 0.1598 0.0776 0.1534 

f6 
PSO 2.1018 4.0787 5.1683 6.2467 

SASAC_PSO(III) 0.4535 1.7521 2.5902 3.4123 
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dimensions (the number of variables of the function) is 5, the maximum value is equal to 0.0034 at the 3rd run out of 30 

experimental runs (The parameters of the algorithms). math are selected the same.Specifically according to the description of the 

demo program in section 3.4.2). In this table 5.4 we also show the generation in which that best value is found. It can be seen that 

the results in this table are essentially identical with those in table 5.3 where SASAC-PSO usually gives the best results. 

 

 Table 5.5 Average running time of the methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 is the time-average results over the 30 runs of each method measured in miniseconds. It can be seen from this table that 

the methods almost all run at the same speed. The difference is insignificant.  

 

6. CONCLUDE 

The swarm optimization method is a form of population evolutionary algorithms known before such as genetic algorithm (GA), 

Ant colony algorithm. However, PSO differs from GA in that it favors using the interactions between individuals in a population 

to explore the search space. PSO is the result of modeling the flight of birds in search of food, so it is often classified as 

algorithms that use swarm intelligence. Introduced in 1995 at an IEEE conference by James Kennedy and engineer Russell 

C.Eberhart. Algorithms have many important applications in all fields where solving optimization problems is required.  

In this report, we use the basic PSO algorithm, and the improved PSO algorithms are c-PSO and W-PSO. The use of the basic 

PSO algorithm and In the future, we want to continue our studies on the methods of adaptively tuning the parameters of the PSO 

algorithm to further improve the efficiency of the algorithm. We also want to apply these results in solving problems, especially 

optimizing the storage and search of the Gen-Disease dictionary at our institution. 
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