International Journal of Social Science And Human Research

ISSN(print): 2644-0679, ISSN(online): 2644-0695
Volume 06 Issue 05 May 2023
DOI: 10.47191/ijsshr/v6-i5-02, Impact factor- 6.686
Page No: 2516-2544

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Nursatyo ${ }^{1}$, Lely Arrianie ${ }^{2}$, Siti Komariah ${ }^{\mathbf{3}}$, Ferenia Febi Auliasari ${ }^{4}$
${ }^{1,2,3,4}$ Department of Communication Studies, Faculty of Social and Political Science, Universitas Nasional,Jakarta, Indonesia

Abstract

Efforts to increase online media traffic can be realized by increasing reader engagement. The high frequency and intensity of readers and interactions in reading news online, such as commenting and sharing the article, indicate a high level of reader involvement. The article attempts to show the influence between the motives of using online media, news selection, and news attractiveness on the level of reader involvement. Through distributing questionnaires to 95 students, the study uses a survey method with an explanative quantitative approach. Data are analyzed using multivariate analysis techniques with correlation coefficient test and multiple linear regression. The results show a strong and positive correlation between the motive for media use, news selection, the level of media attractiveness, and the level of reader involvement of 0.659 . The multiple linear regression test also proves a significant influence between the three independent variables on the level of reader involvement with an influential contribution of 43.4\%.

KEYWORDS: Online Media, Reader Engagement

1. INTRODUCTION

Studying online news readers' behavior is an important issue today, especially for managers of online media companies. It is useful for increasing reader engagement and traffic, which will bring economic benefits to the company's business. The development of online news media technology also affects the consumption patterns of readers. The characteristics of web 2.0 are more interactive, increase interaction and reader engagement, such as providing comments and disseminating the news to social networking sites, such as Facebook, Instagram, and Twitter, and messaging apps such as WhatsApp, Line, and Telegram.

The use of social networking sites by online media also increases the penetration of news content. Media companies make use of social networking sites to spread news content more widely. Social networking site users are spoiled by news content posted by media company accounts. Through social networking sites, interesting news content is then disseminated again until it becomes viral. Users can also like or dislike news content. Through social networking sites, followers of news social networking sites voluntarily redistribute news content to other parties.

The increase of the online media business cannot be separated from the increasing penetration of the internet and smartphones. Based on Digital 2020 data from Wearesocial and Hootsuite institutions, there are 4.54 billion internet users in the world number, or 59% of the world's total population, 7.75 billion people. Indonesia is the third-largest country in internet growth, with internet penetration of 64% (https://wearesocial.com/digital-2020). It is in line with data from the Indonesian Internet Service Providers Association (APJII), which states that by 2018 internet users in Indonesia reached 171.17 million people or 64.8% of Indonesia's total population of 264.16 million (https://www.apjii.or.id/content/read/39/410/Hasil-Survei-Penetrasi-dan-Perilaku-Pengguna-Internet-Indonesia-2018).

The presence of online news sites threatens print media, such as newspapers, tabloids, and magazines. The number of newspapers and magazines that have gone out of business is increasing both in Indonesia and globally. Many newspapers, tabloids, and magazines have collapsed in Indonesia, such as Sinar Harapan newspaper, National Journal, Tempo Minggu Koran, Bola tabloid, Cek and Ricek, HAI magazine, Trax, Rollingstone Indonesia, and others (https://www.romelteamedia.com/2019/09/daftar-29-media-cetak-yang-gulung-tikar.html). Although no one has closed the business yet, the radio and television media business has also declined. It is true, especially in the conditions of the Covid-19 pandemic that has hit the world since the end of 2019 (https://katadata.co.id/happyfajrian/berita/5efcb1407a8c5/kenaikan-jumlah-penonton-saat-pandemi-tak-dorong-kinerja-perusahaan-tv).

The future development of the internet will undoubtedly threaten print media, even radio, and television in the future. The medium (medium theory) theory developed by Marshal McLuhan, inspired by Harold Adams Innis, states that the communication media is the core of civilization. The dominant media direct the history of culture in every era. Media is an extension of the human

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

mind for McLuhan and Innis. The prevalent use of media can influence the history of human development itself. McLuhan's thesis is that humans will adapt to changes in their environment to achieve a balance based on rationality (Littlejohn et al., 2017: 146147).

In 1990, Mark Poster published his famous book, The Second Media Age. The book started a new period in which technology and interactive communication networks, especially the internet, will change society (Littlejohn et al., 2017: 148). The term second-generation media is born from several changes in understanding media and audience behavior. The second generation of media began to shift mass, defined initially as a broad, multiple, and anonymous media audience, to be very heterogeneous and increasingly narrow or personal. The second shift is in the concept of audience behavior, which was previously considered passive because media messages are one-way, becoming active and interactive in using media. David Holmes in Littlejohn (2017) explains the differences between the first and second-generation media, which the authors write in the following table:

Table 1. Differences in the Characteristics of First and Second Generation Media

First Generation Media	Second Generation Media
Centralized production, one-to-many;	Decentralized and user-generated, many to many
One-way communication;	or many to few;
State control, for the most part;	Two-way communication;
The reproduction of social stratification and inequality	Beyond state control;
through the media;	Democratizing;
Fragmented mass audiences); and	Promoting individual consciousness); and
The shaping of social consciousness	Individually oriented

In addition to the above characteristics of the internet as a second-generation media, the development of digital and multimedia technology via smartphones and computers also strengthens the influence of online media technology. Computer technology, especially laptops, as well as smartphones, have used digital data, which has multimedia properties. It gives computers and smartphones can combine all media elements (text, images, audio, video, animation) into one multimedia medium. Multimedia technology is the advantage of online media today compared to previous conventional media. Previously, printed media was only able to accommodate text and image elements; radio was only able to carry audio features, and television, which initially was only able to carry video (audiovisual) and animation. Television media has been able to take all the elements of multimedia today through smart TVs.

The multimedia ability in online media has finally led to the convergence of media, which merges several media characters into one medium. It causes online media such as detik.com, kompas.com, etc., to contain news text and photos. However, it can also be filled with radio content and television shows from media in their respective media groups. Even digital versions of newspapers, such as the digital Kompas newspaper, is also displayed on the website.

The characteristics of new media, which are interactive, global (worldwide), and personal, ultimately influence various sectors of life, be it social, political, economic, and cultural, including readers' behavior in using media.

2. Objectives

This article attempts to show the influence between the motives of using online media, news selection, and news attractiveness on the level of reader involvement.

2. LITERATURE REVIEW

2.1 Online Media Audience Behavior

As explained above, the second generation of new media has changed audiences' behavior (audience behavior) from passive to active and interactive. This condition reinforces the Uses and Gratification theory created by Elihu Katz in 1959 and inaugurated in 1970 (Littlejohn, 2017: 174-175).

There are five assumptions built-in Uses and Gratification theory:

1. The audience is active in choosing a variety of media. Audiences have many media choices. They choose which media they want to read, listen to or watch.
2. The audience has a clear objective in selecting media, namely to meet needs. Media is only one of the factors that can fulfill these needs.
3. Various media compete to create content to attract public attention.
4. The audience's social environment has a strong influence on the choice of media consumed by the audience.
5. The influence of the media has a strong relationship with the media consumed by the public. The greater the audience's satisfaction in choosing the media, the greater its influence on the audience.

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Suppose it is related to the behavior of audiences in using online media today. In that case, it can be seen that there are a need and motivation for audiences to use the media. Denis McQuail (2000) identifies four types of needs in consuming media: entertainment motives, obtaining information, building personal identity, and social interaction.

In the past, when the new media did not exist, the needs of the audience could not be fulfilled by just one media. For example, to meet entertainment needs, audiences prefer to watch television or radio. But to fulfill the need for complete information, audience also reads newspapers and magazines. That's why radio and television only complements and does not kill the existence of newspapers and magazines. But nowadays, all of the needs can be served by online media. That is what causes the audience to have high satisfaction in using this online media.

Rational aspects based on effectiveness and efficiency also underlie the behavior of audiences in using the media. The audience is always looking for and choosing to use cheaper/economic media. Since its inception until now, the print media business has mainly been determined by sales circulation. The higher the sales circulation, the greater the advertising revenue. The public must spend money to use print media. It is different from how the public listens to radio and television, which are free (free to air). The attention of the audience is what is sold to the advertisers. The audience does not pay for the radio and television broadcasts that are consumed. So the more viewers or listeners, the radio and television business, the better.

Efficiency also applies in using the internet. Audiences can get various kinds of content, both entertainment and information, which are multimedia in nature. They contain various media, such as text, images, audio, video, and animation, by purchasing internet data packages. It strengthens audiences' behavior in using online media, where it is more efficient in using resources (money) but gets a lot of benefits and can meet all the audience's needs.

Susanto and Erdiyansyah's research (2018) shows that partially or simultaneously, motives and information quality affect reader satisfaction. In the motive dimension, the information motive indicator is the indicator most preferred by the respondents. In contrast, in the information quality dimension, the respondents' news relevance indicator is most chosen. The variable that has more influence on satisfaction is the variable of information quality.

Other research on the behavior of online news media readers comes from Delasari (2019), who examines the behavior of users of the Line Today news aggregator application in Jakarta, Surabaya, Medan. In her research, Delasari looked more at the relationship between media use and trust level in the news, which influenced news sharing behavior. From the research results, it was found that the motive of using the media and the level of trust in the news influenced the tendency of news sharing behavior significantly and positively by 37.6%. Specifically, news sharing behavior preference was influenced 37.3% by using the media and 27.9% by the level of trust in the news.

The two studies above look at the quality and level of trustworthiness of information or news, while this research looks at the level of attractiveness of online media. The author assumes that audience engagement in providing comments and disseminating news is more influenced by online media's attractiveness for readers.

The study conducted by Lestari (2017) states that the trend of online media coverage in Indonesia is divided into two categories, namely Quality News and Popular News. Quality News can be seen from the technicality of writing following journalistic principles and the issues raised concerning the public interest. Meanwhile, Popular News emphasizes sensationally, which emphasizes entertainment and personal matters. Online media's tendency to increase popular news is due to the demand for speed to compete with other online media.

2.2 Uses and Gratification Theory

Based on the Uses and Gratification Theory, the writer develops a line of thought to examine the influence of media usage motives, news choice motives, and online media attractiveness levels on the level of reader involvement. The motive for using online media is measured through four motives put forward by McQuail (2000), namely entertainment, obtaining information, building personal identity, and social interaction. Meanwhile, the motive for selecting news is measured through the reader's interest in information updates, information needs, interest in news headlines, reported figures, viral issues, and close friends' influence. The attractiveness of online media is measured by the respondent's assessment of the design's appearance, news headlines, news content, sources, language, and news writing techniques. Meanwhile, reader engagement is measured by frequency, duration, the number of news read, reading patterns, giving likes, comments, and disseminating information through social media and messaging applications.

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Figure 1. Framework of thought

3. RESEARCH METHOD

The study uses a survey research method with a quantitative approach based on a positivistic paradigm (Neuman, 2014: 317). It is chosen to obtain objective, systematic, and measurable data on the behavior of some people who are sampled, namely online newsreaders. The type of research is explanative, aiming to find a cause and effect relationship (causality) between several variables.

3.1 Data Collection and Analysis

Data is collected using a questionnaire instrument made through the google form application. The questionnaire is then sent using a non-probability method and convenience sampling to several National University students via the Whatsapp application on the author's contact list. The author gave the filling time for 3 (three) days until finally, the data collected are 95 respondents.

The study is a multivariate study that intends to examine the relationship between several independent variables (X) on one dependent variable (Y). There are three independent variables, namely Online Media Use Motives (X1), News Selection Motive (X2), and Online Media Attractiveness Level (X3). In contrast, the dependent variable is the level of reader involvement (Y).

The authors use the validity test, reliability test, and normality test to test the data's validity. The data is then processed using the IBM SPSS Statistics 22 application.

3.2 Validity Test

The validity test uses the Pearson correlation product-moment technique by measuring each statement item against the total variable value. Statement item is said to be valid if r count> r table and the value of Sig. (2-tailed) <0.05. Following are the results of the validity test for each statement item:

Table 2. Validity Test Results

VARIABLE X1	R Count	R \quad Table 5% (95)	Note
I read online news to get the latest information Pearson Correlation Sig. (2-tailed)	$\begin{aligned} & .500^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read online news to get information faster Pearson Correlation Sig. (2-tailed)	$\begin{aligned} & .672^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read online news in my spare time Pearson Correlation Sig. (2-tailed)	$\begin{aligned} & .619^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read the news online so that I don't miss thePearson Correlation information Sig. (2-tailed)	$\begin{aligned} & .710^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read online news so that it is easier for me toPearson Correlation hang out or socialize with friends Sig. (2-tailed)	$\begin{aligned} & .763^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read online news to keep me entertained /Pearson Correlation happy Sig. (2-tailed)	$\begin{aligned} & .730^{* *} \\ & .000 \end{aligned}$	0.202	Valid

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

VARIABLE X1	R Count	$\begin{array}{\|lc\|} \hline \mathrm{R} & \text { Table } \\ 5 \% & (95) \end{array}$	Note
I read news online to make myself appear smartPearson Correlation and insightful Sig. (2-tailed)	$\begin{aligned} & 608^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read news online to help me be more availablePearson Correlation when posting on social media Sig. (2-tailed)	$\begin{aligned} & 635^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I read the news online so I can help with myPearson Correlation studies and/or work Sig. (2-tailed)	$\begin{aligned} & 690^{* *} \\ & .000 \end{aligned}$	0.202	Valid
$\begin{array}{ll}\text { I read online news to avoid hoaxes } & \text { Pearson Correlation } \\ & \text { Sig. (2-tailed) }\end{array}$	$\begin{aligned} & 678^{* *} \\ & .000 \end{aligned}$	0.202	Valid

VARIABLE X2	R Count	$\begin{array}{\|ll\|} \hline \mathrm{R} & \text { Table } \\ \mathbf{5 \%} & (95) \end{array}$	Note
I choose the news I read because the informationPearson Correlation is up to date Sig. (2-tailed)	$\begin{aligned} & 563^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I choose the news that I read because I need the Pearson Correlation information Sig. (2-tailed)	$\begin{aligned} & 447^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I choose the news that I read because I amPearson Correlation interested in the headline Sig. (2-tailed)	$\begin{aligned} & 629^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I chose the news that I read because I was Pearson Correlation interested in the news photos Sig. (2-tailed)	$\begin{aligned} & 710^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I choose the news that I read because I amPearson Correlation interested in the source of the news Sig. (2-tailed)	$\begin{aligned} & 744^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I choose the news that I read because I amPearson Correlation interested in the reporters/news writers Sig. (2-tailed)	$\begin{aligned} & 637^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I choose the news I read because my idol/role Pearson Correlation model is in the news Sig. (2-tailed)	$\begin{aligned} & 689^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I chose the news that I read because the issue Pearson Correlation was viral on social media Sig. (2-tailed)	$\begin{aligned} & 452^{* *} \\ & 000 \end{aligned}$	0.202	Valid
I choose the news I read because of the influencePearson Correlation of my friends Sig. (2-tailed)	$\begin{aligned} & .595^{* *} \\ & .000 \end{aligned}$	0.202	Valid
I choose the news I read because it gets the mostPearson Correlation comments Sig. (2-tailed)	$\begin{aligned} & .601^{* *} \\ & .000 \end{aligned}$	0.202	Valid

VARIABLE X3	R Count	R Table 5% (95)	Note
Display of websites or online media applicationsPearson Correlation	.648**	0.202	Valid
Sig. (2-tailed)	000		
Ease of access/use of applications Pearson Correlation	605**	0.202	Valid
Sig. (2-tailed)	000		
Writing News Headlines Pearson Correlation	682**	0.202	Valid
Sig. (2-tailed)	000		
Selected News Photos Pearson Correlation	675**	0.202	Valid
Sig. (2-tailed)	000		
Issues / News Themes raised Pearson Correlation	659**	0.202	Valid
Sig. (2-tailed)	000		
Interviewees Pearson Correlation	763**	0.202	Valid
Sig. (2-tailed)	000		
The language used in writing news Pearson Correlation	802**	0.202	Valid

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

VARIABLE X3		R Count	$\begin{array}{\|ll\|} \hline \mathrm{R} & \text { Table } \\ 5 \% & (95) \end{array}$	Note
	Sig. (2-tailed)	. 000		
News content writing technique	Pearson Correlation Sig. (2-tailed)	$\begin{aligned} & 701^{* *} \\ & .000 \\ & \hline \end{aligned}$	0.202	Valid

VARIABLE Y		R Count	R Table 5% (95)	Note
Read news headlines and news content in full	Pearson Correlation Sig. (2-tailed)	. $362^{* *}$	0.202	Valid
		. 000		
Read the news content slowly and in detail	Pearson Correlation Sig. (2-tailed)	.499**	0.202	Valid
		. 000		
Clicking on the related news link	Pearson Correlation Sig. (2-tailed)	.563**	0.202	Valid
		. 000		
Clicking on the news video link	Pearson Correlation Sig. (2-tailed)	682**	0.202	Valid
		. 000		
Give likes on news	Pearson Correlation Sig. (2-tailed)	696**	0.202	Valid
		. 000		
Comment on news	Pearson Correlation Sig. (2-tailed)	649**	0.202	Valid
		. 000		
Share news to WhatsApp groups	Pearson Correlation Sig. (2-tailed)	.754**	0.202	Valid
		. 000		
Share news to social media	Pearson Correlation Sig. (2-tailed)	.753**	0.202	Valid
		. 000		

3.3 Reliability Test

The reliability test results for each variable also show that it is reliable because the Cronbach's Alpha value is >0.70 (Field, 2017: 1200) as presented in the summary table below:

Table 3. Reliability Test Results

Variable	Cronbach's Alpha	N of Items
Online Media Use Motives (X1)	.848	10
News Selection Motives (X2)	.814	10
Online Media Attractiveness (X3)	.844	8
Reader Engagement (Y)	.808	8

4. RESULTS AND DISCUSSION

Based on the validity and reliability tests above, it can be stated that all statement items are valid and reliable. Next is a description of the results of the study using descriptive statistics and parametric statistical tests.

4.1 Respondent Profile

The study respondents are 95 students of the Nasional University and Asia Cyber University, of which 61% are women, and 39% are men. The respondents' age range ranged from 17-45 years, with the most being 19-22 years old, and the majority (51.6%) are still in semester 1. Even though the respondents are students, 47.4% of the respondents also work, and 10.5% have a business. The percentage of respondents who only goes to college is 42.1%.

Suppose cross-tabulated between gender and student status, students who study while working or owning a business are more male. Meanwhile, students who only go to college are more dominated by women.

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Table 4. Gender * Student Crosstabulation Status
Count

			Student Status		
		Students	Students while working	Students own businesses	Total
Gender	Woman	32	22	4	58
	Total	Man	8	23	6

4.2 Online News Reading Behavior

From the results of data analysis about online media that is most read (open question), it is known that there are three online news media that are most read by students, namely detik.com (38.9\%), kompas.com (24.2\%), and cnnindonesia.com (11.6\%). One of the exciting things is that when respondents are asked whether they install online news applications on their smartphones, it turns out that only 35.3% install online media applications on their smartphones. More respondents access online news via a web browser (47.1%). Meanwhile, 17.6% of those access online news through social networking sites. It shows that the need for news information does not encourage respondents to install online news applications on smartphones.

Table 5. The most-read online news media in the past week

		Frequency	Percentage	Valid Percentage	Cumulative Percentage
Valid	Bisnis.com	2	2.1	2.1	2.1
	cnnindonesia.com	11	11.6	11.6	13.7
	detik.com	37	38.9	38.9	52.6
	geotimes.co.id	1	1.1	1.1	53.7
	gridoto.com	2	2.1	2.1	55.8
	idntimes.com	1	1.1	1.1	56.8
	kompas.com	23	24.2	24.2	81.1
	kumparan.com	1	1.1	1.1	82.1
	Line Today	4	4.2	4.2	86.3
	liputan6.com	3	3.2	3.2	89.5
	narasi.tv	2	2.1	2.1	91.6
	rctiplus.com	1	1.1	1.1	92.6
	tempo.co	2	2.1	2.1	94.7
	tribunnews.com	4	4.2	4.2	98.9
	vivanews.co.id	1	1.1	1.1	100.0
	Total	95	100.0	100.0	

The news rubrics most read by respondents are Political news (28.4\%), Feature (22.1\%), Economy (14.7\%), Infotainment (11.6\%), and Law and Crime (10, 5\%).

Table 6. The most frequently read online news rubrics

			Valid	Cumulative	
	Frequency	Percentage	Percentage	Percentage	
Valid	Politics	14	28.4	28.4	28.4
	Economy	10	14.7	14.7	43.2
	Law and Crime	6	6.3	10.5	53.7
	Socio-cultural				
Infotainment / celebrity news	11	11.6	11.6	60.0	
	Feature (culinary, traveling,	21	22.1	22.1	93.6
				9.7	

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

			Valid Percentage	Cumulative Percentage
International	Frequency	Percentage	2.1	2.1
Sports	4	4.2	4.2	100.0
Total	95	100.0	100.0	

When viewed from the time spent reading news online, most respondents (34\%) read online news at night. In comparison, those who frequently read online news during the day are 26%. The rest of the respondents read news online, 22% in the morning, 14% in the afternoon, and 4% in the early hours. It means that online news reading behavior is mostly done to fill spare time or leisure time after work.

Figure 2. Time to read news online

If we look at the frequency of reading news online in a month, 43.2% of respondents read 2-3 times a week based on data. Meanwhile, those who read online news every day are 40%. As many as 10.5% of respondents read online news once a week.

Table 7. Frequency of reading news online in a month

| | | | Valid | Cumulative |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Prequency | Percentage | Percentage | Percentage | |

Meanwhile, if we look at the frequency of accessing online media in one day, the data shows that most respondents (47.4\%) state that they access online media 1-2 times a day. Meanwhile, 37.9% of respondents state that they access online news 3-4 times a day.

Table 8. Frequency of reading online news in a day

		Frequency	Percentage	Valid Percentage	Cumulative Percentage
Valid	1-2 times	45	47.4	47.4	47.4
	3-4 times	36	37.9	37.9	85.3
	5-6 times	11	11.6	11.6	96.8
	> 8 times	3	3.2	3.2	100.0
	Total	95	100.0	100.0	

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Based on the data, it is also found that the length of time (duration) that respondents spent reading online news every time they access them, the majority of respondents (54.7\%) state that they could spend 5-10 minutes. Meanwhile, 25.3% of respondents spent 10-15 minutes reading news online.

Table 9. Duration of time each time you read news online

			Valid	Cumulative	
	Frequency	Percentage	Percentage	Percentage	
Valid	<5 minutes	8	8.4	8.4	8.4
	$5-10$ minutes	52	54.7	54.7	63.2
	$10-15$ minutes	24	25.3	25.3	88.4
	$15-20$ minutes	6	6.3	6.3	94.7
	>20 minutes	5	5.3	5.3	100.0
	Total	95	100.0	100.0	

4.3 Online Media Use Motives (X1)

One of the variables to be measured in the study is the motive for using online media. It is the motivation from within a person or a person's goal to access online media. Following are the results of descriptive statistics for variable X1, namely the Motives for Using Online Media:

Table 10. Online Media Use Motives (X1)

	N	Mean	Std. Deviation	Variance	Skewness		Kurtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
I read online news to get the latest information	95	4.60	. 735	. 540	-2.324	. 247	6.642	490
I read online news to get information faster	95	4.52	. 784	. 614	-1.882	. 247	4.122	. 490
I read online news in my spare time	95	3.71	1.020	1.040	-. 237	. 247	-. 549	. 490
I read the news online so that I don't miss the information	95	4.41	. 805	. 649	-1.387	. 247	2.131	. 490
I read online news so that it is easier for me to hang out or socialize with friends	95	3.74	1.205	1.451	-. 594	. 247	-. 593	. 490
I read online news to keep me entertained / happy	95	3.48	1.119	1.252	-. 355	247	-. 337	. 490
I read online news to make myself appear smart and insightful	95	3.32	1.223	1.495	-. 239	247	-. 746	. 490
I read news online to help me be more available when posting on social media	95	2.77	1.410	1.988	. 330	247	-1.118	. 490
I read the news online so I can help with my studies and/or work	95	4.24	. 919	. 845	-1.260	. 247	1.665	. 490
I read online news to avoid hoaxes	95	4.19	. 937	. 879	-1.024	. 247	. 529	. 490
Valid N (listwise)	95							

The data above shows that the motive for using online media is greater driven by the motive for obtaining information with a mean value above 4 , such as getting the latest information (4.60), getting information faster (4.52), staying update (4.41), helping with

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

lecture/work assignments (4.24), and avoiding hoaxes (4.19). Meanwhile, entertainment motives have a mean number below 4 , such as filling leisure time (3.71) and having fun/entertainment (3.48). The motive for building a personal identity measured through statement items to make it look smart and insightful has a mean value of 3.32 , and to exist on social media has the lowest mean value of 2.77. The social interaction motive measured through statement items to make it easier to socialize or socialize with friends has a mean value of 3.74 . Thus, it can be concluded that the biggest motive for respondents to use online media is obtaining information.
The calculation process is used to determine the level of motives for using online media as follows:

Table 11. Calculation of Data Categories

Minimum value	1×10 question items	10
Maximum value	5×10 question items	50
Range	$50-10$	40
Mean	$(50+10) / 2$	30
Standard Deviation	$30 / 6$	5
Low Category	$=\mathrm{X}<30-5$ $=\mathrm{X}<25$	$10-24$
Medium category	$=30-5 \leq \mathrm{X}<30+5$ $=25 \leq \mathrm{X}<35$	$25-34$
High Category	$=30+5 \leq \mathrm{X}$ $=35 \leq \mathrm{X}$	$35-50$

Following are the results of calculating descriptive statistics for the motive level of using online media:
Table 12. Levels of Online Media Use Motives (X1)

				Valid Percentage	Cumulative Percentage
Valid	Low	3	3.2	3.2	3.2
	Moderate	20	21.1	21.1	24.2
	High	72	75.8	75.8	100.0
	Total	95	100.0	100.0	

Based on the data above, as many as 75.8% of respondents have a high motivation level for online media. Meanwhile, 21.1% of respondents have a moderate level of motive for using online media. Meanwhile, 3.2% of respondents have a low motive level for using online media.

4.4 News Selection Motives (X2)

Another variable to be measured in the study is the news selection motive, namely the motivation in a person or the purpose of a person choosing an online news item to read. It is based on the work of the online media that prioritizes speed in producing news so that there is so much and varies news presented in the online media. However, not all headlines are read by the public. Following are the results of descriptive statistics for variable X2, namely the News Selection Motive:

Table 13. The motive of News Selection

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

I choose the news that I read because I am interested in the headline I chose the news that I read because I was interested in the news photos I choose the news I read because I am interested in the source of the news I choose the news that I read because I am interested in the reporters/news writers I choose the news I read because my idol/role model is in the news I chose the news that I read because the issue was viral on social media I choose the news I read because of the influence of my friends I choose the news I read because it gets the most comments Valid N (listwise)	N	Mean	Std. Deviation	Variance	Skewnes		Kurtosis	
	Statisti c	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
		4.02	1.010	1.021	-. 738	. 247	- 295	490
	95	3.41	1.225	1.500	-. 338	. 247	-. 872	490
	95	3.24	1.227	1.505	-. 159	. 247	-. 738	490
	95	2.62	1.178	1.387	. 422	247	-. 588	490
	95	3.43	1.217	1.482	-. 379	. 247	-. 688	490
	95	4.27	. 868	. 754	-1.463	. 247	2.846	490
	95	2.47	1.138	1.295	. 664	. 247	- 203	490
	95	2.86	1.251	1.566	. 032	. 247	-. 974	490

The data above shows that respondents' biggest motive in choosing a news item to read is because the information is the latest with a mean value of 4.28 , the issue is viral on social media (4.27), and a need for information to be sought (4.21). Also, news headlines' writing influences respondents to click on a news item (mean 4.02). Meanwhile, the factors of journalists/news writers, friends, and news that get the most comments are not the basis for selecting the news.
The following calculation process is used to determine the level of news selection motives:
Table 14. Calculation of Data Categories

Minimum value	1×10 question items	10
Maximum value	5×10 question items	50
Range	$50-10$	40
Mean	$(50+10) / 2$	30
Standard Deviation	$30 / 6$	5
Low Category	$=\mathrm{X}<30-5$ $=\mathrm{X}<25$	$10-24$
Medium category	$=30-5 \leq \mathrm{X}<30+5$ $=25 \leq \mathrm{X}<35$	$25-34$
High Category	$=30+5 \leq \mathrm{X}$ $=35 \leq \mathrm{X}$	$35-50$

Following are the results of calculating descriptive statistics for the level of news selection motives:

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Table 15. Levels of News Selection Motives (X2)

		Frequency	Percentage	Valid Percentage	Pumulative Percentage
Valid	Low	6	6.3	6.3	6.3
	Moderate	40	42.1	42.1	48.4
	High	49	51.6	51.6	100.0
	Total	95	100.0	100.0	

The data above shows that 51.6% of respondents have a high level of news selection motives. Meanwhile, 42.1% and 6.3% of respondents have a moderate and low level of news selection motives.

4.5 Online Media Attractiveness (X3)

The third variable to be measured in the study is the level of attractiveness of online media. It is the respondent's assessment of news elements that have been read in online media. Following are the results of descriptive statistics for variable X3, namely the level of attractiveness of online media:

Table 16. Level of Attractiveness in Online Media

	N	Mean	Std. Deviation	Variance	Skewness		Kurtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
Views of websites or online media applications	95	4.05	. 817	. 667	-. 935	.247	1.480	. 490
Ease of access/use of applications	95	4.40	. 706	. 498	-. 935	247	. 334	. 490
Writing News Headlines	95	4.06	. 697	. 485	-. 086	247	-. 904	. 490
Selected News Photos	95	3.84	. 829	. 688	-. 267	247	-. 497	. 490
Issues / News Themes raised	95	4.18	. 799	. 638	-. 592	247	-. 444	. 490
Interviewees	95	3.76	. 953	. 909	-. 171	247	-. 964	. 490
The language used in writing news	95	4.15	. 771	. 595	-. 829	247	. 723	. 490
News content writing technique Valid N (listwise)	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	4.16	. 829	. 688	-. 762	247	. 033	. 490

Based on the data above, the respondents give the highest rating for the level of attractiveness in the aspect of easy access/use of the application (mean 4.40), selected news issues/themes (4.18), news content writing techniques (4.16), language used in news writing (4.15), news headlines (4.06) and website/application display (4.05). Simultaneously, the interviewees' elements and news photos are given the lowest attractiveness level (3.76) and (3.84), respectively.
The following calculation process is used to determine the level of attractiveness of online media:

Table 17. Calculation of Data Categories

Minimum value	1×8 question items	8
Maximum value	5×8 question items	40
Range	$40-8$	32
Mean	$(40+8) / 2$	24
Standard Deviation	$24 / 6$	4
Low Category	$=\mathrm{X}<24-4$ $=\mathrm{X}<20$	$8-19$
Medium category	$=24-4 \leq \mathrm{X}<24+4$ $=20 \leq \mathrm{X}<28$	$20-27$
High Category	$=24+4 \leq \mathrm{X}$ $=28 \leq \mathrm{X}$	$28-40$

Following are the results of calculating descriptive statistics for the level of attractiveness of online media:

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Table 18. Levels of Online Media Attractiveness (X3)
$\left.\begin{array}{|ll|l|l|l|l|}\hline & & & & \text { Valid } \\ \text { Percentage }\end{array}\right)$

The data above shows that 85.3% of respondents rate online media, which they frequently access has a high level of attractiveness. Meanwhile, 14.7% of respondents consider that the online media they often access has a moderate attractiveness level.

4.6 Reader Engagement (Y)

The last variable to be measured in the study is reader engagement. It is defined as active involvement or participation, which is indicated by the high frequency and intensity of reading news in media, providing comments, and disseminating (share) news articles to his friends or on social networking sites (Miles, 2020). The following are the results of descriptive statistics for variable Y, namely the level of reader engagement:

Table 19. Reader Engagement Level

Read news headlines and news content in full	N	Mean	Std. Deviation	Variance	Skewness		Kurtosis	
	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
	95	4.14	. 752	. 566	-. 997	. 247	2.363	490
Read news content quickly	95	3.75	. 922	. 850	-. 470	. 247	. 238	490
Read the contents of the news slowly and in detail	95	3.79	. 910	. 828	-. 260	. 247	-. 747	. 490
Clicking on the related news link	95	3.82	. 978	. 957	-. 397	. 247	-. 533	490
Clicking on the news video link	95	3.20	1.154	1.332	-. 317	. 247	-. 703	490
Give likes on news	95	2.86	1.293	1.673	. 109	. 247	-1.066	490
Comment on news	95	2.05	1.114	1.242	. 978	. 247	. 290	490
Share news to WhatsApp groups	95	2.35	1.261	1.591	. 613	. 247	-. 562	490
Share news to social media Valid N (listwise)	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	2.53	1.156	1.337	462	. 247	-. 425	490

The data above shows that the reader engagement of respondents in reading news online can be seen in the behavior of reading news headlines and complete news content (mean 4.14). Meanwhile, the behavior of giving likes, comments, or distributing articles to other people, both through the Whatsapp messaging application and social networking sites, can be categorized as low (mean < 3). The following calculation process is used to determine the level of reader engagement:

Table 20. Calculation of Data Categories

Minimum value	1×8 question items	8
Maximum value	5×8 question items	40
Range	$40-8$	32
Mean	$(40+8) / 2$	24
Standard Deviation	$24 / 6$	4
Low Category	$=\mathrm{X}<24-4$ $=\mathrm{X}<20$	$8-19$
Medium category	$=24-4 \leq \mathrm{X}<24+4$ $=20 \leq \mathrm{X}<28$	$20-27$
High Category	$=24+4 \leq \mathrm{X}$ $=28 \leq \mathrm{X}$	$28-40$

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Following are the results of calculating descriptive statistics for the levels of reader engagement:
Table 21. Levels of Reader Engagement

				Valid Valid	Cumulative Percentage
	Moderate	23	24.2	24.2	24.2
	High	72	75.8	75.8	100.0
	Total	95	100.0	100.0	

The data above shows that 75.8% of respondents have a high level of engagement. In comparison, 24.2% of respondents had a moderate level of engagement.

4.7 Normality test

Before the parametric statistical test is carried out, the normality test is carried out first to see whether the data distribution is normal or not. If normal, then a parametric statistical test can be performed. If not, then a non-parametric statistical test will be performed. The normality test used is the Kolmogorov-Smirnov normality test using the IBM SPSS Statistics 22 application. The basis for making this normality test decision is if the significance value (Sig.) >0.05, then the research data is normally distributed. Here are the results:

Tabel 22. Tests of Normality

	Kolmogorov-Smirnov $^{\text {a }}$				Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.	
	.081	95	.137	.972	95	.042	
	.074	95	$.200^{*}$.982	95	.224	
	.091	95	.053	.966	95	.014	
	.090	95	.053	.964	95	.011	

*. It is a lower bound of the true significance.
a. Lilliefors Significance Correction

The Kolmogorov-Smirnov normality test results above show the Sig. all variables> 0.05 . Thus, it can be said that the data has a normal distribution. So, the statistical test to be used is the parametric statistical test.

4.8 F test

The next statistical analysis is multiple regression analysis, which aims to see the effect of variables $\mathrm{X} 1, \mathrm{X} 2$, and X 3 on variable Y . It is necessary first to carry out the F-test before looking at the results of multiple regression analysis as follows:

Tabel 23 ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1557.312	3	519.104	23.274	$.000^{\mathrm{b}}$
	Residual	2029.677	91	22.304		
	Total	3586.989	94			

a. Dependent Variable: Reader Engagement
b. Predictors: (Constant), online media attractiveness, news selection motives, online media use motives

The calculation result above shows that the F test value has a Sig value. $0.000<0.05$. It may imply that the motive for using online media, the motive for selecting news, and the attractiveness of the online media simultaneously have a significant effect on reader engagement.

4.9 t-test

The next statistical analysis is the t-test to see whether there is an effect of each variable (X1/X2 / X3) partially on variable Y. Here are the results of the t -test analysis:

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Table 24. Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardiz ed Coefficient s Beta	t\|	Sig.
		B	Std. Error			
1	(Constant)	1.477	3.837		. 385	. 701
	Online Media Use Motives	. 245	. 098	268	2.495	. 014
	News Selection Motive	. 234	. 098	. 255	2.395	. 019
	Online Media Attractiveness	. 381	128	274	2.976	. 004

a. Dependent Variable: Reader Engagement

The table above shows that the t-test value for the online media use motives variable (X1) is 2.495 . Meanwhile, the t-test value for the news selection motives variable (X2) is 2.395, and the t-test value for the online media attractiveness variable (X3) is 2.976 . Compared with the t table value of 0.025 , serial number 91 (number df residual table 23 ANOVA) is 1.990 , then t-count for the three variables $>\mathrm{t}$ table. It means that hypothesis 1 , which states that the motives for using online media affects reader engagement, is acceptable. Likewise, hypothesis 2, which states that news selection motives affect reader engagement, is acceptable. The same thing with hypothesis 3 that the level of attractiveness of online media affects reader engagement is acceptable.

4.10 Multiple Correlation Coefficient Test

The results of data analysis in the table below show that the value of the multiple correlation coefficient (R) between the independent variables ($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$) together on the dependent variable (Y) is 0.659 . It shows that there is a strong and positive relationship between the variable online media use motives (X1), news selection motives (X2), and online media attractiveness (X3), with the variable level of reader engagement (Y).

Table 25. Model Summary

Model	R	R Square	Adjusted Square	RStd.Error of the Estimate
1	$.659^{\mathrm{a}}$.434	.416	4.723

a. Predictors: (Constant), online media attractiveness, news selection motives, online media use motives

4.11 Analysis of the Coefficient of Determination

The table above shows the coefficient of determination (R Square) is 0.434 . It means that the contribution of the influence between the variable of online media use motives (X1), news selection motives (X2), and online media attractiveness (X3) simultaneously on the variable level of reader engagement (Y) is 43.4%. It means that other variables contribute 56.6%, which affects the level of reader involvement outside of the study.

The correlation test for each variable X1, X2, and X3 against Y is performed first to determine the Effective Contribution (SE) of each independent variable. The following are the statistical calculation results:

Table 26. Correlation Coefficient

		Reader Engagement
Online Media Use Motives	Pearson Correlation	$563^{* *}$
	Sig. (2-tailed)	000
	N	95
News Selection Motives	Pearson Correlation	$554^{* *}$
	Sig. (2-tailed)	000
	N	95
Online Media Attractiveness	Pearson Correlation	$519^{* *}$
	Sig. (2-tailed)	000

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

The next step is to combine the results of the correlation coefficient above with the beta regression coefficient in table 24, as follows:
Table 27. Effective Contribution

Variable	Regression Coefficient (Beta)	Correlation coefficient	SE
Online Media Use Motives	.268	.563	15.1%
News Selection Motives	.255	.554	14.1%
Online Media Attractiveness	.274	.519	14.2%

The data above shows that each independent variable's contribution to the dependent variable is relatively equal. The motive to use the online media variable (15.1%) is only slightly more significant than the level of reader engagement.

4.12 Multiple Linear Regression Analysis

The multiple linear regression equation obtained from the results of statistical analysis is $\mathrm{Y}=1.477+0.245 \mathrm{X} 1+0.234 \mathrm{X} 2+0.381 \mathrm{X} 3$. The regression equation implies that the addition of 1 value for the online media use motives variable will affect the level of reader engagement by 0.245 . Simultaneously, an increase of 1 value in the news selection motive variable will increase the level of reader engagement by 0.234 . Meanwhile, an increase of 1 value in the online media attractiveness variable will increase the level of reader engagement by 0.381 .

5. DISCUSSION

As explained above, one of the factors that support the success of online media business is the audience or readers. The online media business depends on traffic, namely the activity of readers on online media. The more a site is visited and the more activity a reader does on a site's pages, the higher the site traffic. (Margianto, 2012: 29). It shows the importance of our attention to reader engagement, which is defined as the reader's involvement or active participation. It is indicated by the high frequency and intensity of reading news on media, providing comments, and disseminating (share) news articles to friends or social networking sites (Miles, 2020).

The results of the multiple correlation coefficient tests show that the relationship between the motive for using online media, the motive for selecting news, and the level of online media attractiveness has a simultaneously strong and positive correlation to the level of reader engagement, which is indicated by a value of 0.659 . A strong and positive relationship indicates that the higher the online media use motives, news selection motives, and online media attractiveness level, the higher the reader engagement level.

The relation between the online media use motives, news selection motives, and online media attractiveness level on reader engagement is also proven to be significant. The results of the F test (Sig. $0.000<0.05$) and the t -test (t count $>\mathrm{t}$ table), both of which indicate the influence together (simultaneously) and each (partially) of the independent variable on the dependent variable.

The contribution of the independent variables' influence simultaneously to the dependent variable, based on the coefficient of determination analysis, shows 43.4%. If broken down for each independent variable's contribution, the calculation results of Effective Contribution (SE) show that the contribution of each independent variable to the dependent variable is relatively equal.

The contribution of the influence of online media use motives to reader engagement is 15.1%. The contribution of the influence of news selection motives on reader engagement is 14.1%, and the contribution of the influence of online media attractiveness to the reader engagement is 14.2%.
The three independent variables on the dependent variable are manifested by multiple linear regression equations obtained from the results of statistical analysis, namely, $\mathrm{Y}=1.477+0.245 \mathrm{X} 1+0.234 \mathrm{X} 2+0.381 \mathrm{X} 3$.

6. CONCLUSION

The results of the statistical test above indicate that the study's hypothesis, which tests the influence between online media use motives, news selection motives, and online media attractiveness on reader engagement, is significant. Although the contribution of the influence of the three independent variables is not so immense, only 43.4%, the relationship between the three independent variables on the dependent variable together shows a strong and positive relationship.

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

For further research, it is necessary to dig deeper into other variables (56.5\%) that affect reader engagement. Knowing the bigger factors that influence reader engagement will provide valuable information for online media managers to develop the right strategy to increase traffic.

ACKNOWLEDGMENT

The author's gratitude goes to Kunto Adi Wibowo, Ph.D., Lecturer in the Communication Science Doctoral Program at Padjadjaran University, who has guided the author in the aspects of quantitative research methods. Thanks also to the reviewers so that this article can be fit.

REFERENCES

1) Delasari, Natasya (2019). The Influence of Media Usage Motives and Level of Trust in News on News Sharing Behavior Tendencies: Research on Students Using LINE TODAY in Jakarta, Surabaya, Medan. Bachelor Thesis, Multimedia Nusantara University.
2) Field, Andy (2017). Discovering Statistics Using IBM SPSS Statistics. 5th Edition. London: SAGE Publication
3) Lestari, Rani Dwi (2017). Quality News and Popular News as a Trend of Online Media Coverage (Qualitative Descriptive Study of Quality News and Popular News Reporting Trends on National Online Media in Indonesia for 2016). Channel Journal, Vol. 5, No. 1, April 2017, p. 83-94
4) Littlejohn, Stephen W, Karen A. Foss, John G. Oetzel. (2017). Theories of Human Communication, Eleventh Edition, Illinois: Waveland Press Inc.
5) Margianto, J. Heru and Asep Syaefullah (2012). Media Online: Pembaca, Laba, dan Etika. Problematika Praktik Jurnalisme Online di Indonesia. Jakarta: Aji Indonesia
6) McQuail, Denis. (2000). Mass Communication Theory, 4th Edition, London: Sage Publications Ltd.,
7) Miles, Stephanie (2020). How to Define Reader Engagement - A Guide for Publishers. Accessed via https://webpublisherpro.com/how-to-define-reader-engagement-a-guide-for-publishers/
8) Neuman, W. Lawrence (2014). Social Research Methods: Qualitative and Quantitative Approaches. 7th Edition. London: Pearson Education Limited
9) Susanto, Elsa and Rezi Erdiansyah (2018). Effect of Media Use Motives and Information Quality on Reader Satisfaction Detikcom. Journal of the EISSN Connection 2598-0785. Vol. 2, No. 2, December 2018, pp. 293-299
10) https://www.romelteamedia.com/2019/09/daftar-29-media-cetak-yang-gulung-tikar.html
11) https://katadata.co.id/happyfajrian/berita/5efcb1407a8c5/kenaikan-jumlah-penonton-saat-pandemi-tak-dorong-kinerja-perusahaan-tv
12) https://wearesocial.com/digital-2020
13) https://www.apjii.or.id/content/read/39/410/Hasil-Survei-Penetrasi-dan-Perilaku-Pengguna-Internet-Indonesia-2018

BIOGRAPHY

1) Nursatyo is a lecturer at Department Communication Universitas Nasional Jakarta, Email: nursatyo@civitas.unas.ac.id (Scopus ID: 57214891077, ORCID: https://orcid.org/0000-0002-9861-3387)
2) Lely Arrianie is a lecturer at Department Communication Universitas Nasional Jakarta, Email: lelyarrianie@civitas.unas.ac.id
3) Siti Komariah is a student at Department Communication Universitas Nasional Jakarta, email: komariah964@gmail.com
4) Ferenia Febi Auliasari is a student at Department Communication Universitas Nasional Jakarta, email: fereniaafebi@gmail.com

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

ATTACHMENT

X1 Variable Validity Test

Correlations

	$\begin{aligned} & \text { Ir read } \\ & \text { online } \\ & \text { news } \\ & \text { get } \\ & \text { get } \\ & \text { latest } \\ & \text { lat } \\ & \text { informat } \\ & \text { ion. } \end{aligned}$		I read online news in my spare sime. time		$\|$Ir read online news \quad so that it is easier for me to hang out or socialize with friends.		Ir read online news to make myself appear smart and insightf ul.	I read news online to help me be more availabl e when posting on social media.	I read the news online so I can help with my studies and/or work.	$\left\lvert\, \begin{aligned} & \text { Ir read } \\ & \text { online } \\ & \text { news to } \\ & \text { avoid } \\ & \text { hoaxes. } \end{aligned}\right.$	Motive Using Online Media
I read onlinePearson news to get theCorrelation latest Sig. (2-tailed) information.	95	$\begin{aligned} & .657^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\left\{\begin{array}{l} .352^{* *} \\ .000 \\ 95 \end{array}\right.$	$\begin{aligned} & .729^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .336^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .212^{*} \\ & .039 \\ & 95 \end{aligned}$	$\left\lvert\, \begin{aligned} & .012 \\ & .909 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & -.039 \\ & .708 \\ & 95 \end{aligned}$	$\begin{aligned} & .334^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .281^{* *} \\ & .006 \\ & 95 \end{aligned}$	$\begin{aligned} & .500^{* *} \\ & .000 \\ & 95 \end{aligned}$
I read onlinePearson news to getCorrelation information Sig. (2-tailed) faster N	$\begin{aligned} & .657^{* *} \\ & .000 \\ & 95 \end{aligned}$	95	$\begin{aligned} & .365^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .824^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .506^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .391^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .172 \\ & .095 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .100 \\ & .337 \\ & 95 \end{aligned}$	$\begin{aligned} & .416^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .474^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .672^{* *} \\ & .000 \\ & 95 \end{aligned}$
I read onlinePearson news for myCorrelation spare time Sig. (2-tailed) N	$\begin{aligned} & .352^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .365^{* *} \\ & .000 \\ & 95 \end{aligned}$		$\begin{aligned} & .434^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .300^{* *} \\ & .003 \\ & 95 \end{aligned}$	$\begin{aligned} & .555^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .195 \\ & .058 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .307^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .383^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .271^{* *} \\ & .008 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .619^{* *} \\ & .000 \\ & 95 \end{aligned}$
I read the newsPearson online so that ICorrelation don't miss theSig. (2-tailed) information N	$\begin{aligned} & .729^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .824^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .434^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .584^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .403^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .137 \\ & .186 \\ & 95 \end{aligned}$	$\begin{aligned} & .150 \\ & .146 \\ & 95 \end{aligned}$	$\begin{aligned} & .439^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .445^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .710^{* *} \\ & .000 \\ & 95 \end{aligned}$
I read onlinePearson news so that it isCorrelation easier for me toSig. (2-tailed) hang out orN socialize with friends	$\begin{aligned} & .336^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .506^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .300^{* *} \\ & .003 \\ & 95 \end{aligned}$	$\begin{aligned} & .584^{* *} \\ & .000 \\ & 95 \end{aligned}$		$\begin{aligned} & .545^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .382^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .415^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .414^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .506^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .763^{* *} \\ & .000 \\ & 95 \end{aligned}$
I read onlinePearson news to keep meCorrelation entertained /Sig. (2-tailed) happy N	$\begin{aligned} & .212^{*} \\ & .039 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .391^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .555^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .403^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .545^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .322^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .422^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .505^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .358^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .730^{* *} \\ & .000 \\ & 95 \end{aligned}$
II readnewsPearson online tomakeCorrelationmyself \quad appearSig. (2-tailed)	$\begin{aligned} & .012 \\ & .909 \\ & 95 \end{aligned}$	$\begin{aligned} & .172 \\ & .095 \\ & 95 \end{aligned}$	$\begin{aligned} & .195 \\ & .058 \\ & 95 \end{aligned}$	$\begin{aligned} & .137 \\ & .186 \\ & 95 \end{aligned}$	$\begin{aligned} & .382^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .322^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\left.\right\|_{95} ^{1}$	$\begin{aligned} & .672^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .338^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .365^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .608^{* *} \\ & .000 \\ & 95 \end{aligned}$
I read newsPearson online to helpCorrelation me be moreSig. (2-tailed) available whenN posting on social media.	$\begin{aligned} & -.039 \\ & .708 \\ & 95 \end{aligned}$. 100	$\left[\begin{array}{l} .307^{* *} \\ .002 \\ 95 \end{array}\right.$	$\begin{aligned} & .150 \\ & .146 \\ & 95 \end{aligned}$	$\begin{aligned} & .415^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .422^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .672^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }^{1}$	$\begin{aligned} & .306^{* *} \\ & .003 \\ & 95 \end{aligned}$	$\begin{aligned} & .331^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .635^{* *} \\ & .000 \\ & 95 \end{aligned}$

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2 -tailed).

X1 Variable Reliability Test

Case Processing Summary

		N	$\%$
Cases	Valid	95	100.0
	Excluded ${ }^{\mathrm{a}}$	0	0
	Total	95	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.848	10

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
I read online news to get the latest information.	34.37	41.022	.411	.845
I read online news to get information faster	34.45	38.953	.600	.832
I read online news in my spare time	35.26	37.962	.512	.837
I read the news online so that I don't miss the information	34.56	38.377	.642	.829

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

I read online news so that it is easier for me to hang out or socialize	35.23	34.499	.670	
with friends			.822	
I read online news to keep me entertained / happy	35.48	35.678	.636	.825
I read news online to make myself appear smart and insightful	35.65	36.910	.473	.843
I read news online to help me be more available when posting on	36.20	35.353	.483	.846
social media		37.733	.607	.830
I read the news online so I can help with my studies and/or work	34.73	37.748	.591	.831
I read online news to avoid hoaxes	34.78			

X2 Variable Validity Test

Correlations

	$\begin{aligned} & \text { I } \\ & \text { choose } \\ & \text { the } \\ & \text { news } \\ & \text { that } \\ & \text { read } \\ & \text { becaus } \\ & \text { er the } \\ & \text { inform } \\ & \text { ation } \\ & \text { is } \quad \text { up } \\ & \text { to date } \end{aligned}$	I choose the news that I read because I need the informa tion	I choose the news that I read because I am intereste d in the headline	I chose the news that read becaus e I was interes ted in the news photos	I choose the news I read because I am intereste d in the source of the news			I chose the news that read because the issue was viral on social media		I choos er the news I read becau se it gets the most comm ents	Motives for Choosing the News Read
I choose the news thatPearson I read because theCorrelation information is up to Sig . (2-tailed) date	${ }_{9}^{1}$	$\begin{aligned} & .517^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .354^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .287^{* *} \\ & .005 \\ & 95 \end{aligned}$	$\begin{aligned} & .466^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\left\lvert\, \begin{aligned} & .131 \\ & .207 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & .210^{*} \\ & .041 \\ & 95 \end{aligned}$	$\begin{aligned} & .342^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .080 \\ & .443 \\ & 95 \end{aligned}$	$\begin{aligned} & .298^{* *} \\ & .003 \\ & 95 \end{aligned}$	$\begin{aligned} & .563^{* *} \\ & .000 \\ & 95 \end{aligned}$
I choose the news thatPearson I read because I reallyCorrelation need the information Sig. (2-tailed) N	$\begin{aligned} & .517^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }^{1}$	$\begin{aligned} & .205^{*} \\ & .047 \\ & 95 \end{aligned}$	$\begin{aligned} & .107 \\ & .301 \\ & 95 \end{aligned}$	$\begin{aligned} & .310^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .109 \\ & .291 \\ & 95 \end{aligned}$	$\begin{aligned} & .250^{*} \\ & .014 \\ & 95 \end{aligned}$	$\begin{aligned} & .289^{* *} \\ & .005 \\ & 95 \end{aligned}$	$\begin{aligned} & .044 \\ & .670 \\ & 95 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & .131 \\ & .205 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & .447^{* *} \\ & .000 \\ & 95 \end{aligned}$
I choose the news thatPearson I read because I amCorrelation interested in the Sig. (2-tailed) headline	$\left\{\begin{array}{l} .354^{* *} \\ .000 \\ 95 \end{array}\right.$	$\begin{aligned} & .205^{*} \\ & .047 \\ & 95 \end{aligned}$	${ }^{1}$	$\begin{aligned} & .569^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .348^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{array}{\|l} .150 \\ .147 \\ 95 \\ \hline \end{array}$	$\begin{aligned} & .477^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .333^{* *} \\ & .001 \\ & 95 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & .213^{*} \\ & .038 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & .255^{*} \\ & .013 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .629^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$
I choose the news thatPearson I read because I wasCorrelation interested in the newsSig. (2-tailed) photos N	$\left\{\begin{array}{l} .287^{* *} \\ .005 \\ 95 \end{array}\right.$	$\begin{aligned} & .107 \\ & .301 \\ & 95 \end{aligned}$	$\begin{aligned} & .569^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }^{1}$	$\begin{aligned} & .542^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .456^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .458^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .263^{* *} \\ & .010 \\ & 95 \end{aligned}$	$\begin{aligned} & .287^{* *} \\ & .005 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .259^{*} \\ & .011 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .710^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$
I choose the news IPearson read because I amCorrelation interested in the Sig. (2-tailed) source of the news	$\begin{aligned} & .466^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .310^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .348^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .542^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\left.\right\|_{95} ^{1}$	$\begin{aligned} & .594^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .478^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .127 \\ & .220 \\ & 95 \end{aligned}$	$\begin{aligned} & .336^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .244^{*} \\ & .017 \\ & 95 \end{aligned}$	$\begin{aligned} & .744^{* *} \\ & .000 \\ & 95 \end{aligned}$
I choose the news thatPearson I read because I amCorrelation interested in the $_{\text {Sig. }}$ (2-tailed) reporters/news writers.	.131 .207 95	$\left\lvert\, \begin{aligned} & .109 \\ & .291 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & .150 \\ & .147 \\ & 95 \end{aligned}$	$\begin{aligned} & .456^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .594^{* *} \\ & .000 \\ & 95 \end{aligned}$	95	$\begin{aligned} & .375^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & -.022 \\ & .830 \\ & 95 \end{aligned}$	$\begin{aligned} & .532^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .333^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .637^{* *} \\ & .000 \\ & 95 \end{aligned}$

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Correlations

	$\begin{aligned} & \text { I } \\ & \text { choose } \\ & \text { the } \\ & \text { news } \\ & \text { that } \\ & \text { read } \\ & \text { becaus } \\ & \text { er the } \\ & \text { inform } \\ & \text { ation } \\ & \text { is } \quad \text { up } \\ & \text { to date } \end{aligned}$	I choose I the Inews that It read because I need I the informa tion	I choose the news that I read because I am intereste d in the headline	I chose the news that read becaus e I was interes ted in the news photos		I choose news that read because I am intereste reporter s/news writers		I chose the news that read because the issue was viral on social media		I choos er the news II read becau se it gets the most comm ents	Motives for Choosing the News Read
I choose the news IPearson read because myCorrelation idol/role model is inSig. (2-tailed) the news	$\begin{aligned} & .210^{*} \\ & .041 \\ & 95 \end{aligned}$	$\begin{aligned} & .250^{*} \\ & .014 \\ & 95 \end{aligned}$	$\begin{aligned} & .477^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .458^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .478^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .375^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .239^{*} \\ & .020 \\ & 95 \end{aligned}$	$\begin{aligned} & .319^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .291^{* *} \\ & .004 \\ & 95 \end{aligned}$	$\begin{aligned} & .689^{* *} \\ & .000 \\ & 95 \end{aligned}$
I chose the news that IPearson read because the issueCorrelation was viral on social Sig. (2-tailed) media.	$\left\{\begin{array}{l} .342^{* *} \\ .001 \\ 95 \end{array}\right.$	$\begin{aligned} & .289^{* *} \\ & .005 \\ & 95 \end{aligned}$	$\begin{aligned} & .333^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .263^{* *} \\ & .010 \\ & 95 \end{aligned}$	$\begin{aligned} & .127 \\ & .220 \\ & 95 \end{aligned}$	$\begin{aligned} & -.022 \\ & .830 \\ & 95 \end{aligned}$	$\begin{aligned} & .239^{*} \\ & .020 \\ & 95 \end{aligned}$	\int_{95}^{1}	$\begin{aligned} & .169 \\ & .102 \\ & 95 \end{aligned}$	$\begin{aligned} & .270^{* *} \\ & .008 \\ & 95 \end{aligned}$	$\begin{aligned} & 452^{* *} \\ & .000 \\ & 95 \end{aligned}$
I choose the news IPearson read because of theCorrelation influence of mySig. (2-tailed) friends	$\begin{aligned} & .080 \\ & .443 \\ & 95 \end{aligned}$	$\begin{aligned} & .044 \\ & .670 \\ & 95 \end{aligned}$	$\begin{aligned} & .213^{*} \\ & .038 \\ & 95 \end{aligned}$	$\begin{aligned} & .287^{* *} \\ & .005 \\ & 95 \end{aligned}$	$\begin{aligned} & .336^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .532^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .319^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .169 \\ & .102 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .494^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .595^{* *} \\ & .000 \\ & 95 \end{aligned}$
I choose the news IPearson read because it getsCorrelation the most comments Sig. (2-tailed) N	$\left\{\begin{array}{l} .298^{* *} \\ .003 \\ 95 \end{array}\right.$	$\left\lvert\, \begin{aligned} & .131 \\ & .205 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & .255^{*} \\ & .013 \\ & 95 \end{aligned}$	$\begin{aligned} & .259^{*} \\ & .011 \\ & 95 \end{aligned}$	$\left\lvert\, \begin{aligned} & .244^{*} \\ & .017 \\ & 95 \end{aligned}\right.$	$\begin{aligned} & .333^{* *} \\ & .001 \\ & 95 \end{aligned}$	$\begin{aligned} & .291^{* *} \\ & .004 \\ & 95 \end{aligned}$	$\begin{aligned} & .270^{* *} \\ & .008 \\ & 95 \end{aligned}$	$\begin{aligned} & .494^{* *} \\ & .000 \\ & 95 \end{aligned}$	95	$\begin{aligned} & .601^{* *} \\ & .000 \\ & 95 \end{aligned}$
Motives for ChoosingPearson the News Read Correlation Sig. (2-tailed) N	$\begin{aligned} & .563^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .447^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .629^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .710^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .744^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .637^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .689^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .452^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .595^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .601^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	${ }^{1}$

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

Variable X2 Reliability Test

Case Processing Summary

		N	$\%$
Cases	Valid	95	100.0
	Excluded $^{\text {a }}$	0	0
	Total	95	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Cronbach's Alpha	N of Items
.814	10

Item-Total Statistics

	Scale Mean i Item Deleted	Scale Variance i Item Deleted	Corrected fItem-Total Correlation	Cronbach's Alpha if Item Deleted
I choose the news that I read because the information is up to date.	30.55	39.633	468	801
I choose the news that I read because I really need the information	30.62	40.493	. 323	. 813
I choose the news that I read because I am interested in the headline	30.81	37.794	525	. 794
I chose the news that I read because I was interested in the news photos	31.42	35.119	. 600	. 784
I choose the news that I read because I am interested in the source of the news	31.59	34.542	. 644	. 779
I choose the news that I read because I am interested in the journalists/news writers	32.21	36.615	. 514	. 795
I choose the news I read because my idol/role model is in the news	31.40	35.519	. 574	. 787
I chose the news that I read because the issue was viral on social media	30.56	40.802	. 340	. 811
I choose the news I read because of the influence of my friends	32.36	37.509	469	. 800
I choose the news I read because it gets the most comments	31.97	36.776	. 461	. 802

Variable X3 Validity Test
Correlations

	Display of websites or online media applicati ons	$\left\lvert\, \begin{array}{ll} \text { Ease } & \text { of } \\ \text { access/us } \\ \text { er } & \text { of } \\ \text { applicati } \\ \text { ons } & \text { s } \\ \hline \end{array}\right.$	Written of News Headline s	Selected News Photos	Issues News Themes raised	Intervie wees	The language used in writing news	$\begin{array}{\|l} \text { News } \\ \text { content } \\ \text { writing } \\ \text { techniqu } \\ e \end{array}$	Online Media Attractive ness level
Display of websites orPearson online mediaCorrelation applications Sig. (2-tailed) N	$\left.\right\|_{95} ^{1}$	$\begin{aligned} & .443^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .405^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .389^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .279^{* *} \\ & .006 \\ & 95 \end{aligned}$	$\left\{\begin{array}{l} .358^{* *} \\ .000 \\ 95 \end{array}\right.$	$\begin{aligned} & .426^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\left\{\begin{array}{l} .302^{* *} \\ .003 \\ 95 \end{array}\right.$	$\begin{aligned} & .648^{* *} \\ & .000 \\ & 95 \end{aligned}$
Ease of access/use ofPearson applications Correlation Sig. (2-tailed) N	$\begin{aligned} & .443^{* *} \\ & .000 \\ & 95 \end{aligned}$		$\begin{aligned} & .273^{* *} \\ & .008 \\ & 95 \end{aligned}$	$\begin{aligned} & .291^{* *} \\ & .004 \\ & 95 \end{aligned}$	$\begin{aligned} & .211^{*} \\ & .040 \\ & 95 \end{aligned}$	$\begin{aligned} & .383^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .418^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .400^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .605^{* *} \\ & .000 \\ & 95 \end{aligned}$
Written of NewsPearson Headlines Correlation Sig. (2-tailed) N	$\begin{aligned} & .405^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .273^{* *} \\ & .008 \\ & 95 \end{aligned}$	$\left.\right\|_{95} ^{1}$	$\begin{aligned} & .515^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .438^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .424^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .438^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .351^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .682^{* *} \\ & .000 \\ & 95 \end{aligned}$
Selected News Photos Pearson Correlation Sig. (2-tailed) N	$\begin{aligned} & .389^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .291^{* *} \\ & .004 \\ & 95 \end{aligned}$	$\begin{aligned} & .515^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .316^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .584^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .353^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .253^{*} \\ & .013 \\ & 95 \end{aligned}$	$\begin{aligned} & .675^{* *} \\ & .000 \\ & 95 \end{aligned}$
Issues / News ThemesPearson raised Correlation Sig. (2-tailed) N	$\begin{aligned} & .279^{* *} \\ & .006 \\ & 95 \end{aligned}$	$\begin{aligned} & .211^{*} \\ & .040 \\ & 95 \end{aligned}$	$\begin{aligned} & .438^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .316^{* *} \\ & .002 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .393^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .596^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .423^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .659^{* *} \\ & .000 \\ & 95 \end{aligned}$

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Correlations

	Display of websites or online media applicati ons	$\begin{array}{lr} \text { Ease } & \text { of } \\ \text { access/us } \\ \text { e } & \text { of } \\ \text { applicati } \\ \text { ons } \end{array}$	Written of News Headline s	Selected News Photos	Issues News Themes raised	Intervie wees	The language used in writing news	News content writing techniqu e	Online Media Attractive ness level
Interviewees Pearson Correlation Sig. (2-tailed) N	$\left(\begin{array}{l} .358^{* *} \\ .000 \\ 95 \end{array}\right.$	$\begin{aligned} & .383^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .424^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .584^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .393^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\left.\right\|^{1}$	$\begin{aligned} & .526^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .453^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .763^{* *} \\ & .000 \\ & 95 \end{aligned}$
The language used inPearson writing news Correlation Sig. (2-tailed) N	$\begin{aligned} & .426^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .418^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .438^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .353^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .596^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .526^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .695^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .802^{* *} \\ & .000 \\ & 95 \end{aligned}$
News content writingPearson technique Correlation Sig. (2-tailed) N	$\begin{aligned} & .302^{* *} \\ & .003 \\ & 95 \end{aligned}$	$\begin{aligned} & .400^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .351^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .253^{*} \\ & .013 \\ & 95 \end{aligned}$	$\begin{aligned} & .423^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .453^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .695^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }_{95}^{1}$	$\begin{aligned} & .701^{* *} \\ & .000 \\ & 95 \end{aligned}$
Online mediaPearson attractiveness level Correlation Sig. (2-tailed) N 	$\left[\begin{array}{l} .648^{* *} \\ .000 \\ 95 \end{array}\right.$	$\begin{aligned} & .605^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .682^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .675^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & 659^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .763^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .802^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .701^{* *} \\ & .000 \\ & 95 \end{aligned}$	95

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
Variable X3 Reliability Test
Case Processing Summary

		N	$\%$
Cases	Valid	95	100.0
	Excluded ${ }^{\mathrm{a}}$	0	0
	Total	95	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.844	8

Item-Total Statistics

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { Scale Mean } \\ \text { Item Deleted }\end{array} & \begin{array}{l}\text { if }\end{array} & \text { Scale Variance if } \\ \text { Item Deleted }\end{array}\right)$

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Y Variable Validity Test
Correlations

	Read news headlin es and news content in full	Read the contents of the news slowly and in detail	Clicking on thet related news link	Clickin g on the news video link	Like the news		Share the word to WhatsA pp groups	Share news to social media	Engage ment Levels of Readers
Read news headlines andPearson Correlation news content in full Sig. (2-tailed) N	95	$\begin{aligned} & .509^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .265^{* *} \\ & .009 \\ & 95 \end{aligned}$	$\begin{aligned} & .262^{*} \\ & .010 \\ & 95 \end{aligned}$	$\begin{array}{\|l} \hline .096 \\ .355 \\ 95 \\ \hline \end{array}$	$\begin{array}{\|l} .055 \\ .598 \\ 95 \\ \hline \end{array}$	$\begin{aligned} & .095 \\ & .359 \\ & 95 \end{aligned}$	$\begin{array}{\|l} \hline .136 \\ .187 \\ 95 \\ \hline \end{array}$	$\begin{aligned} & .362^{* *} \\ & .000 \\ & 95 \end{aligned}$
Read the contents of thePearson Correlation news slowly and in detail Sig. (2-tailed)	$\begin{aligned} & .509^{* *} \\ & .000 \\ & 95 \end{aligned}$		$\begin{aligned} & .316^{* *} \\ & .002 \\ & 95 \end{aligned}$	$\begin{aligned} & .375^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .174 \\ & .091 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline .179 \\ & .083 \\ & 95 \end{aligned}$	$\begin{array}{\|l} .296^{* *} \\ .004 \\ 95 \end{array}$	$\begin{aligned} & .299^{* *} \\ & .003 \\ & 95 \end{aligned}$	$\begin{aligned} & .499^{* *} \\ & .000 \\ & 95 \end{aligned}$
Clicking on the relatedPearson Correlation news link Sig. (2-tailed) N	$\begin{aligned} & .265^{* *} \\ & .009 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .316^{* *} \\ & .002 \\ & 95 \end{aligned}$	1	$\begin{aligned} & \hline .569^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .258^{*} \\ & .012 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 116 \\ & .263 \\ & 95 \end{aligned}$	$\begin{array}{\|l} \hline .266^{* *} \\ .009 \\ 95 \end{array}$	$\begin{aligned} & .263^{*} \\ & .010 \\ & 95 \end{aligned}$	$.563^{* *}$.000 95
Clicking on the newsPearson Correlation video link Sig. (2-tailed) N	$\begin{aligned} & .262^{*} \\ & .010 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .375^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{array}{\|l} .569^{* *} \\ .000 \\ 95 \end{array}$	95	$\begin{aligned} & .418^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .356^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{array}{\|l} \hline .368^{* *} \\ .000 \\ 95 \end{array}$	$\begin{aligned} & .351^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .682^{* *} \\ & .000 \\ & 95 \end{aligned}$
Like the news Pearson Correlation Sig. (2-tailed) N	$\begin{aligned} & .096 \\ & .355 \\ & 95 \end{aligned}$	$\begin{aligned} & .174 \\ & .091 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline .258^{*} \\ & .012 \\ & 95 \end{aligned}$	$\begin{aligned} & .418^{* *} \\ & .000 \\ & 95 \end{aligned}$		$\begin{aligned} & .581^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .453^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .518^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline .696^{* *} \\ & .000 \\ & 95 \end{aligned}$
Comment on news Pearson Correlation Sig. (2-tailed) N	$\begin{aligned} & \hline .055 \\ & .598 \\ & 95 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline .179 \\ .083 \\ 95 \\ \hline \end{array}$	$\begin{aligned} & .116 \\ & .263 \\ & 95 \end{aligned}$	$\begin{aligned} & .356^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .581^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	95	$\begin{aligned} & .547^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .540^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .649^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$
Share the word toPearson Correlation WhatsApp groups Sig. (2-tailed) N	$\begin{aligned} & .095 \\ & .359 \\ & 95 \end{aligned}$	$\begin{aligned} & .296^{* *} \\ & .004 \\ & 95 \end{aligned}$	$\begin{aligned} & .266^{* *} \\ & .009 \\ & 95 \end{aligned}$	$\begin{aligned} & .368^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .453^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .547^{* *} \\ & .000 \\ & 95 \end{aligned}$	95	$\begin{aligned} & .712^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .754^{* *} \\ & .000 \\ & 95 \end{aligned}$
Share news to socialPearson Correlation media Sig. (2-tailed) N	$\begin{aligned} & \hline .136 \\ & .187 \\ & 95 \\ & \hline \end{aligned}$	$.299^{* *}$.003 95	$\begin{array}{\|l} \hline 263^{*} \\ .010 \\ 95 \\ \hline \end{array}$	$\begin{aligned} & \hline .351^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .518^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & .540^{* *} \\ & .000 \\ & 95 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 712^{* *} \\ .000 \\ 95 \\ \hline \end{array}$	95	$.753^{* *}$.000 95
Engagement Levels ofPearson Correlation Readers Sig. (2-tailed) N	$\begin{aligned} & .362^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .499^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .563^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .682^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .696^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .649^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 754^{* *} \\ & .000 \\ & 95 \end{aligned}$	$\begin{aligned} & .753^{* *} \\ & .000 \\ & 95 \end{aligned}$	${ }^{1}$

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
Y Variable Reliability Test
Case Processing Summary

		N	$\%$
Cases	Valid	95	100.0
	Excluded $^{\mathrm{a}}$	0	.0
	Total	95	100.0

a. Listwise deletion based on all variables in the procedure.

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Reliability Statistics

Cronbach's Alpha	N of Items
.808	8

Item-Total Statistics

	Scale Mean Item Deleted	if Scale Variance if Item Deleted	Corrected Item- Total Correlation	Cronbach's Alpha if Item Deleted
Read news headlines and news content in full.	20.60	29.711	. 273	. 815
Read the contents of the news slowly and in detail	20.95	27.561	. 432	. 799
Clicking on the related news link	20.92	27.163	. 431	. 799
Clicking on the news video link	21.54	24.485	. 586	. 776
Give likes on news	21.87	23.643	. 572	. 779
Comment on news	22.68	25.048	. 558	. 781
Share news to the WhatsApp group	22.39	23.240	. 632	. 768
Share news to social media	22.21	23.764	. 658	. 765

Normality test

Case Processing Summary

	Cases					
	Valid	Missing	Porcent			
	N	Percent	N	Percent	N	100.0%
	95	100.0%	0	0.0%	95	100.0%
	95	100.0%	0	0.0%	95	100.0%
	95	100.0%	0	0.0%	95	100.0%
	95	100.0%	0	0.0%	95	

Descriptives

		Statistic	Std. Error
Online Media Use Motives	Mean	38.97	. 692
	95\% Confidence Interval forLower Bound	37.60	
	Mean Upper Bound	40.34	
	5\% Trimmed Mean	39.15	
	Median	39.00	
	Variance	45.435	
	Std. Deviation	6.741	
	Minimum	21	
	Maximum	50	
	Range	29	
	Interquartile Range	8	
	Skewness	-. 252	. 247
	Kurtosis	-. 293	. 490
News Selection Motives	Mean	34.83	. 691
	95\% Confidence Interval forLower Bound	33.46	
	Mean Upper Bound	36.20	
	5\% Trimmed Mean	34.74	
	Median	35.00	

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

Descriptives

		Statistic	Std. Error
	Variance	45.333	
	Std. Deviation	6.733	
	Minimum	19	
	Maximum	50	
	Range	31	
	Interquartile Range	8	
	Skewness	. 100	247
	Kurtosis	. 105	490
Online Media Attractiveness	Mean	32.60	456
	95\% Confidence Interval forLower Bound	31.69	
	Mean Upper Bound	33.51	
	5\% Trimmed Mean	32.72	
	Median	32.00	
	Variance	19.753	
	Std. Deviation	4.444	
	Minimum	20	
	Maximum	40	
	Range	20	
	Interquartile Range	5	
	Skewness	-. 138	. 247
	Kurtosis	-. 138	490
Reader Engagement	Mean	31.59	634
	95\% Confidence Interval forLower Bound	30.33	
	Mean Upper Bound		
	5\% Trimmed Mean	31.35	
	Median	31.00	
	Variance	38.159	
	Std. Deviation	6.177	
	Minimum	20	
	Maximum	50	
	Range	30	
	Interquartile Range	7	
	Skewness	. 674	. 247
	Kurtosis	. 776	490

Tests of Normality

	Kolmogorov-Smirnov $^{\mathrm{a}}$				Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.	
Online Media Use Motives	.081	95	.137	.972	95	.042	
News Selection Motives	.074	95	$.200^{*}$.982	95	.224	
Online Media Attractiveness	.091	95	.053	.966	95	.014	
Reader Engagement	.090	95	.053	.964	95	.011	

*. It is a lower bound of the true significance.
a. Lilliefors Significance Correction

X1 Variable Descriptive Statistics
 Descriptive Statistics

	$\begin{array}{\|l} \mathrm{N} \\ \hline \begin{array}{l} \text { Stati } \\ \text { stic } \end{array} \\ \hline \end{array}$	Ran ge Stat istic	Minimum	$\begin{aligned} & \mathrm{Max} \\ & \mathrm{imu} \\ & \mathrm{im} \\ & \mathrm{i} \\ & \mathrm{i} \text { Stati } \\ & \text { stic } \end{aligned}$	Sum	Mean		Std. Deviat ion Statist ic	Varia nce Statist ic	Skewness		Kurtosis	
					Stati stic	Stati stic	Std. Error			Statisti c	iStd. Erro	Statisti c	Std. Error
I read online news to get the latest information	95	4	1	5	437	4.60	. 075	735	. 540	-2.324	247	6.642	490
I read online news to get information faster	5	4	1	5	429	4.52	. 080	784	. 614	-1.882	247	4.122	. 490
I read online news in my spare time	95	4	1	5	352	3.71	. 105	1.020	1.040	-. 237	247	-. 549	. 490
I read the news online so that I don't miss the information	95	4		5	419	4.41	. 083	805	. 649	-1.387	247	2.131	. 490
I read online news so that it is easier for me to hang out or socialize with friends	95	4		5	355	3.74	. 124	1.205	1.451	-. 594	247	-. 593	490
I read online news to keep myself entertained / happy	95	4		5	331	3.48	. 115	1.119	1.252	-. 355	247	-. 337	490
I read news online to make myself appear smart and insightful	95	4		5	315	3.32	. 125	1.223	1.495	-. 239	247	-. 746	490
I read news online to help me be more available when posting on social media	95	4	1	5	263	2.77	. 145	1.410	1.988	. 330	247	-1.118	490
I read the news online so I can help with my studies and/or work	95	4	1	5	403	4.24	. 094	. 919	. 845	-1.260	. 247	1.665	. 490
I read online news to avoid hoaxes	95			5	398	4.19	096	. 937	. 879	-1.024	. 247	529	490

X2 Variable Descriptive Statistics

Descriptive Statistics

	$\begin{array}{\|l\|} \mathrm{N} \\ \hline \text { Sta } \\ \text { tist } \\ \text { ic } \\ \hline \end{array}$	$\begin{array}{\|l} \text { Ran } \\ \text { ge } \end{array} \left\lvert\, \begin{aligned} & \text { Stati } \\ & \text { stic } \end{aligned}\right.$	Mini mum Stati stic	Max imu m Stati stic	Sum	Mean		Std. Devia tion	Varia nce	Skewness		Kurtosis	
					Statis tic	$\begin{aligned} & \text { Stati } \\ & \text { stic } \end{aligned}$	Std. Error	$\begin{aligned} & \text { Statist } \\ & \text { ic } \end{aligned}$	Statist ic	Statist ic	Std. Erro r	$\begin{aligned} & \text { Statisti } \\ & c \end{aligned}$	Std. Error
I choose the news that I read because the information is up to date	95	3	2	5	407	4.28	. 087	. 846	. 716	-. 907	247	-. 108	490
I choose the news that I read because I need the information	95	4		5	400	4.21	. 098	. 955	. 913	-1.260	247	1.423	490
I choose the news that I read because I am interested in the headline	5	4		5	382	4.02	. 104	1.010	1.021	-. 738	247	-. 295	490
I chose the news that I read because I was interested in the news photos	95	4		5	324	3.41	. 126	1.225	1.500	-. 338	247	-. 872	490
I choose the news that I read because I am interested in the source of the news		4		5	308	3.24	. 126	1.227	1.505	-. 159	247	-. 738	. 490
I choose the news that I read because I am interested in the journalists/news writers	95	4		5	249	2.62	. 121	1.178	1.387	422	247	-. 588	. 490
I choose the news I read because my idol/role model is in the news	5	4		5	326	3.43	125	1.217	1.482	-. 379	247	-. 688	. 490
I chose the news that I read because the issue was viral on social media	95	4		5	406	4.27	. 089	. 868	. 754	-1.463	247	2.846	. 490
I choose the news I read because of the influence of my friends	95	4	1	5	235	2.47	. 117	1.138	1.295	. 664	247	- 203	. 490

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

X3 Variable Descriptive Statistics
 Descriptive Statistics

	N	$\begin{aligned} & \text { Ran } \\ & \text { ge } \end{aligned}$	Mini mum	Maxi mum	Sum	Mean		Std. Devia tion	Varia nce	Skewness		Kurtosis	
	$\left\lvert\, \begin{aligned} & \text { Stati } \\ & \text { stic } \end{aligned}\right.$	$\begin{aligned} & \text { Stati } \\ & \text { stic } \end{aligned}$	Statis tic	Statis tic	$\begin{aligned} & \text { Stati } \\ & \text { stic } \end{aligned}$	$\begin{aligned} & \text { Stati } \\ & \text { stic } \end{aligned}$	Std. Erro r	Statist ic	Statist ic	$\left.\right\|_{c} \text { Statisti }$	Std. Erro r	Statist ic	Std. Error
Display of websites or online media applications	95	4	1	5	385	4.05	. 084	. 817	667	-. 935	247	1.480	. 490
Ease of access/use of applications	95	3	2	5	418	4.40	. 072	. 706	. 498	-. 935	247	334	. 490
Writing News Headlines	95	2	3	5	386	4.06	. 071	. 697	. 485	-. 086	. 247	-. 904	. 490
Selected News Photos	95	3	2	5	365	3.84	085	. 829	. 688	-. 267	. 247	-. 497	. 490
Issues / News Themes raised	95	3	2	5	397	4.18	. 082	799	638	-. 592	247	-. 444	. 490
Interviewees	95	3	2	5	357	3.76	. 098	. 953	909	-. 171	247	-. 964	. 490
The language used in writing news	95	3	2	5	394	4.15	. 079	. 771	595	-. 829	. 247	723	. 490
News content writing technique	95			5	395	4.16	. 085	. 829	688	-. 762	247	. 033	. 490
Valid N (listwise)	95												

Y Variable Descriptive Statistics

Descriptive Statistics

	N	$\begin{aligned} & \text { Rang } \\ & \mathrm{e} \end{aligned}$	Mini mum	$\begin{aligned} & \mathrm{Max} \\ & \mathrm{imu} \\ & \mathrm{~m} \end{aligned}$	Sum	Mean		Std. Devia tion	$\begin{aligned} & \text { Varia } \\ & \text { nce } \end{aligned}$	Skewness		Kurtosis	
	$\begin{array}{\|l} \hline \text { Stati } \\ \text { stic } \end{array}$	Statist ic	Statis tic	Stati stic	Statis tic	Statis tic	Std. Error	Statis tic	Statis tic	Statis tic	Std. Error	Statis tic	Std. Error
Read news headlines and news content in full	95	4	1	5	393	4.14	. 077	. 752	. 566	-. 997	. 247	2.363	490
Read the contents of the news slowly and in detail	95	3	2	5	360	3.79	. 093	. 910	. 828	-. 260	. 247	-. 747	490
Clicking on the related news link	95	4	1	5	363	3.82	. 100	. 978	. 957	-. 397	. 247	-. 533	. 490
Clicking on the news video link	95	4	1	5	304	3.20	. 118	1.154	1.332	. 317	. 247	-. 703	. 490
Likes on news	95	4			272	2.86	. 133	1.293	1.673	109	. 247	1.066	490
Comment on news	95	4	1	5	195	2.05	. 114	1.114	1.242	. 978	. 247	290	. 490
Share news to the WhatsApp group	95	4	1	5	223	2.35	. 129	1.261	1.591	613	. 247	. 562	. 490
Share news to social media	95	4	1	5	240	2.53	. 119	1.156	1.337	462	. 247	. 425	490
Valid N (listwise)	95												

Multiple Linear Regression Test

Variables Entered/Removed ${ }^{\text {a }}$

Model	Variables Entered	Variables Removed	Method

The Influence of Motives for Media Use, News Selection, and Attractiveness Level of Online Media on Reader Engagement

| 1 | The level of online media attractiveness,
 news selection motives, online media use
 motives ${ }^{\mathrm{b}}$ |
| :--- | :--- | :--- |$. \quad$ Enter \quad| (|
| :--- |

a. Dependent Variable: Reader Engagement Levels
b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted Square	RStd.Error of the Estimate
1	$.659^{\mathrm{a}}$.434	.416	4.723

a. Predictors: (Constant), The level of online media attractiveness, news selection motives, online media use motives

ANOVA ${ }^{\text {a }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1557.312	3	519.104	23.274	$.000^{\mathrm{b}}$
	Residual	2029.677	91	22.304		
	Total	3586.989	94			

a. Dependent Variable: Reader Engagement Levels
b. Predictors: (Constant), The level of online media attractiveness, news selection motives, online media use motives

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error			
1	(Constant)	1.477	3.837		. 385	. 701
	Online Media Use Motives	. 245	. 098	. 268	2.495	. 014
	News Selection Motives	. 234	098	. 255	2.395	. 019
	Online Media Attractiveness	. 381	. 128	. 274	2.976	. 004

a. Dependent Variable: Reader Engagement Levels

There is an Open Access article, distributed under the term of the Creative Commons AttributionNon Commercial 4.0 International (CC BY-NC 4.0)
(https://creativecommons.org/licenses/by-nc/4.0/), which permits remixing, adapting and building upon the work for non-commercial use, provided the original work is properly cited.

